
106

Introduction and Elimination, Left and Right

KLAUS OSTERMANN, University of Tübingen, Germany

DAVID BINDER, University of Tübingen, Germany

INGO SKUPIN, University of Tübingen, Germany

TIM SÜBERKRÜB, University of Tübingen, Germany

PAUL DOWNEN, University of Massachusetts Lowell, USA

Functional programming language design has been shaped by the framework of natural deduction, in which

language constructs are divided into introduction and elimination rules for producers of values. In sequent

calculus-based languages, left introduction rules replace (right) elimination rules and provide a dedicated

sublanguage for consumers of values. In this paper, we present and analyze awider design space of programming

languages which encompasses four kinds of rules: Introduction and elimination, both left and right. We

analyze the influence of rule choice on program structure and argue that having all kinds of rules enriches a

programmer’s modularity arsenal. In particular, we identify four ways of adhering to the principle that žthe

structure of the program follows the structure of the datał and show that they correspond to the four possible

choices of rules. We also propose the principle of bi-expressibility to guide and validate the design of rules

for a connective. Finally, we deepen the well-known dualities between different connectives by means of the

proof/refutation duality.
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1 INTRODUCTION

Undoubtedly, the 𝜆-calculus has had a profound impact on functional programming: from language
design, to implementation, to practical programming techniques. Through the Curry-Howard
correspondence, we know that the 𝜆-calculus Ð and likewise, 𝜆-based functional languages Ð
are oriented around the interplay between the introduction and elimination rules of types as first
formulated in natural deduction (ND). This natural deduction style of programming nicely allows
for a quite łnaturalž way of combining sub-problems in programs, like basic operations of function
composition 𝑓 (𝑔 𝑥) and swapping the pair 𝑥 as (Snd 𝑥, Fst 𝑥). The natural compositional style is
afforded by the fact that all expressions in the 𝜆-calculus produce exactly one result that is implicitly
taken by exactly one consumer: namely, the enclosing context of that expression. While the single
implicit consumer is natural for composition, it can be rather unnatural if we ever want to work
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with more than one consumer. In these cases, we must reify the implicit consumer to make it
explicit Ð such as resorting to continuation-passing style [Reynolds 1972] or control operators like
call/cc Ð which leads to the rather asymmetric situation of having a mix of one special implicit
output with additional explicit outputs.
When might functional programmers want to juggle multiple consumers at the same time?

Consider the familiar filter function, naturally expressible in any typed functional language:

filter : (𝑎 → 𝐵𝑜𝑜𝑙) → [𝑎] → [𝑎]

filter 𝑝 [] = []

filter 𝑝 (𝑥 :: 𝑥𝑠) = If 𝑝 𝑥 Then 𝑥 :: filter 𝑝 𝑥𝑠

Else filter 𝑝 𝑥𝑠

This function successfully removes any elements from a given list 𝑥𝑠 which fail the test 𝑝 , leaving
only those elements 𝑥 for which (𝑝 𝑥) is true. From a quick inspection of the definition, we can
see that the output of this function always fits its specification. So what’s wrong? The problem
is with efficiency. It’s quite likely that a large chunk of the filtered output will be the same as the
input, and yet filter will reallocate a new cons cell for every (::) in the output, even if that same list
already exists in memory. As an extreme case, if we filter with the constant function const 𝑥 𝑦 = 𝑥,

the call filter (const True) 𝑥𝑠 will allocate and return an entirely new list that is equal to 𝑥𝑠 .
Instead, we would rather that a call like filter (const True) 𝑥𝑠 notices its output will be equal to

𝑥𝑠 , so that it can return the exact same object 𝑥 that was already allocated in the heap. In a more
general case, it may be that only some suffix of 𝑥𝑠 all passes the test 𝑝 ; if so, filter 𝑝 𝑥𝑠 should return
a list that only allocates new cons cells for the prefix of the list that is changed, connected to an
identical pointer to the same suffix of the original 𝑥𝑠 list in the heap. And in any case, filter 𝑝 𝑥𝑠

should only traverse the list 𝑥𝑠 once, and when it has reached the end of the list, it should return
immediately and not have to unwind a call-stack first, so it would need to be written in a partially
tail-recursive way. This is quite a tall order to satisfy in a conventional functional language. Shivers
and Fisher [2004] showed how to express efficient filtering using multi-return functions. However,
this solution complicates ordinary first-class functions with another concern (multiple different
return paths); going against orthogonal language design philosophy of keeping separate features
separate.

The classical sequent calculus (SC) can also be interpreted Curry-Howard-style as a prototypical
programming language. Sequent-style languages turn several implicit aspects of the 𝜆-calculus into
explicit, symmetric entities. There is a context containing many named outputs, dual to the many
named inputs in the context of free variables. Besides terms which primarily produce results, there
are terms which primarily consume inputs. Elimination rules are replaced by left rules operating
on consumers. Computation happens inside of a command ⟨𝑒 | | 𝑓 ⟩, which connects the output of
a producer 𝑒 with the input of a consumer 𝑓 . For instance, the consumer Fst o

9 𝑓 should be read
as łproject the implicit pair to its first component and then continue with 𝑓 ž and is reduced as
⟨(𝑒1, 𝑒2) | | Fst o

9 𝑓 ⟩ ⊲ ⟨𝑒1 | | 𝑓 ⟩. Compared to ND, programs in SC have an łinside-outž structure,
which Wadler [2003] has compared to the external plumbing of the Pompidou center in Paris. Yet,
whereas gazing upon the Pompidou center may be a beautiful sight, sifting through the bureaucratic
plumbing of a large-scale sequent-style program is not.
Still, the use of left rules lets the classical sequent calculus express new kinds of types which

are not expressible in conventional functional languages. These new, exotic types would let us
decompose a complex feature like multi-return functions into more basic parts. But must we always
suffer through painful bureaucracy to access these types for programming? No! Our insight is that
we can combine the best of both natural deduction (introduction versus elimination) and sequent
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(◦) : 𝑏 −≺≺ ¬(𝑎 → 𝑏) −≺≺ 𝑎

⟨𝑥 | | 𝛼 ◦ Not 𝑓 ⟩ = ⟨𝑓 𝑥 | | 𝛼⟩

filter : (𝑎 → 𝐵𝑜𝑜𝑙) → [𝑎] → [𝑎]

⟨filter 𝑝 𝑥𝑠 | | start⟩ = ⟨Handle (filter/pass 𝑝 𝑥𝑠) with (start ◦ Not (const 𝑥𝑠))

| | start⟩

filter/pass : (𝑎 → 𝐵𝑜𝑜𝑙) → [𝑎] → [𝑎] ` ()

⟨filter/pass 𝑝 [] | | [diff , same]⟩ = ⟨() | | 𝑠𝑎𝑚𝑒⟩

⟨filter/pass 𝑝 (𝑥 :: 𝑥𝑠) | | [diff , same]⟩ = If 𝑝 𝑥

Then ⟨filter/pass 𝑝 𝑥𝑠 | | [diff ◦ Not (𝑥 ::), same]⟩

Else ⟨filter/pass 𝑝 𝑥𝑠 | | [diff , diff ◦ Not (const 𝑥𝑠)]⟩

Fig. 1. Parsimonious filter function

calculus (left versus right) styles in the same program, making use of exotic new types of control
flow that juggle multiple consumers while still enjoying pleasantly natural, functional composition.

We propose having four styles of rules: introductions and eliminations on both the left and the
right. Doing so lets us introduce new ways of programming that keeps all the familiar features
we already know as they are, and also lets us talk about new types that can’t be expressed in
conventional functional languages. For example, we can decompose the idea of multi-return
functions [Shivers and Fisher 2004] into several orthogonal features: regular functions (of type
𝑇1 → 𝑇2), computations juggling two continuations (of type 𝑇1 ` 𝑇2), functions transforming a
consumer of 𝑇1s to a consumer of 𝑇2s (of type 𝑇1 −≺≺ 𝑇2), and the reversal between producers and
consumers (of type ¬𝑇 ).

Together, these features let us write the efficient1 filtering function using familiar programming
concepts (first-class functions and exception handling) and reusable combinators (like const above
and the following composition ◦ of a function with a continuation) based on a function filter/pass

which either filters a list by removing at least one failing element, or finds element passes (Figure 1).
The rest of this paper will go into the detail needed to read, understand, and specify how this
example works.

So, should we program in ND style or in SC style? We say: both! The purpose of this work is to
analyze and complete the logic calculus design space opened up by ND and SC and investigate the
interdependency between logical calculus style and program structure. More specifically, we make
the following contributions:

• We investigate the usage of all four kinds of rules, introduction and elimination, both left and
right. We identify four different sub-calculi: The intro calculus (which corresponds to classical
SC), the right calculus (which corresponds to ND), the elimination calculus (which has only
left and right elimination rules), and the left calculus (which features left introduction and
elimination rules).

• We analyze the influence of these calculi on program structure (and hence modularity,
extensibility etc.). Specifically, we argue that the common programming design guideline
łthe structure of the program follows the structure of the dataž can be interpreted in four
ways, and that those four ways correspond to the four calculi described above.

1We are defining a calculus via a reduction semantics, and that semantics does not feature pointers, so we cannot directly

talk about sharing and do not make any practical efficiency claims here. We will clarify that point in Section 7.
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• We clarify the relation between the different rules of a connective by the concept of bi-
expressibility. Informally, bi-expressibility means that the left introduction rule is as powerful
as the right elimination rule and the right introduction rule is as powerful as the left elimina-
tion rule.

• We deepen the known dualities between connectives by using the proof/refutation duality

[Tranchini 2012]. Specifically, we show that the typing, term-level representation, and reduc-
tion of łdualž connectives can be derived mechanically, which gives rise to the possibility of
a new form of consumer/producer polymorphism, in which a term can be interpreted as both a
producer of type 𝑇 or as a consumer of the dual of 𝑇 .

All theorems presented in this paper have been mechanized and proven in Coq (submitted as
supplementary material).

The remainder of this paper is structured as follows: In Section 2, we give an informal introduction
to the language frameworkwe present and describe the influence of rule choice on program structure.
In Section 3, we present a small core language featuring functions as well as positive sums and
products. In Section 4, we introduce bi-expressibility and present an operational semantics of
the language. In Section 5, we demonstrate how to mechanically derive the dual connectives
(cofunctions, negative sums and products) and elaborate on the idea of duality polymorphism. In
Section 6 we describe extensions of the calculus framework with logical constants and universal
and existential types. In Section 7.2 we present examples to illustrate the new possibilities of
programming in a language with all four kinds of rules. Section 8 presents related and future work
and Section 9 concludes.

2 MOTIVATION

To get started, let’s analyze the interaction between logical structure and program structure. As
an example, consider the connective ⊕ as an algebraic data type in a typical functional language.
Values of the type 𝑋 ⊕ 𝑌 are built using the constructors Left and Right Ð these correspond nicely
to the two introduction rules of 𝑋 ⊕ 𝑌 in natural deduction. To use values of type 𝑋 ⊕ 𝑌 , we
can employ a Case-expression that pattern-matches on the two possible alternatives Ð likewise
corresponding exactly to natural deduction’s elimination rule for 𝑋 ⊕ 𝑌 . Using these tools, we can
swap these two options Ð transforming an unknown value 𝑧 : 𝑋 ⊕ 𝑌 into a result of 𝑌 ⊕ 𝑋 Ð by
matching on the originally-chosen option and replacing it with the opposite constructor like so:

Case 𝑧 { Left 𝑥 ↦→ Right 𝑥 ;

Right 𝑦 ↦→ Left 𝑦 }

Rather than always thinking of producing some (implicit) output using introductions and elim-
inations, a sequent-based language does away with eliminations altogether. Instead, it uses the
dichotomy between producers which implicitly return some result as an output Ð just like we are
used to in conventional functional programming Ð versus consumers which implicitly take an
input to use analogous to continuations. The same swapping operation Ð converting an unknown
𝑧 : 𝑋 ⊕ 𝑌 into a 𝑌 ⊕ 𝑋 Ð can be written in sequent style as:

⟨𝑧 | | Match { Left 𝑥 ↦→ ⟨Right 𝑥 | | 𝛼⟩

Right 𝑦 ↦→ ⟨Left 𝑦 | | 𝛼⟩}⟩

Notice the several differences in this version of the same program. The top-most operation is
a command of the form ⟨𝑒 | | 𝑓 ⟩ which connects the implicit output returned from a producer 𝑒
into the implicit input expected by a consumer 𝑓 . Unlike producers and consumers, commands
have no implicit input or output. Rather than the Case expression Ð which has an explicit input
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Table 1. Four different ways to swap the components of 𝑧 : 𝑋 ⊕ 𝑌 and send to consumer 𝛼 : 𝑌 ⊕ 𝑋

Calculus Program

Right Case 𝑧 {Left 𝑥 ↦→ ⟨Right 𝑥 | | 𝛼⟩;Right 𝑦 ↦→ ⟨Left 𝑦 | | 𝛼⟩}

Intro ⟨𝑧 | | Match {Left 𝑥 ↦→ ⟨Right 𝑥 | | 𝛼⟩;Right 𝑦 ↦→ ⟨Left 𝑦 | | 𝛼⟩⟩

Left ⟨𝑧 | | Match {Left 𝑥 ↦→ ⟨𝑥 | | Right o
9 𝛼⟩;Right 𝑦 ↦→ ⟨𝑦 | | Left o

9 𝛼⟩}⟩

Elim Case 𝑧 {Left 𝑥 ↦→ ⟨𝑥 | | Right o
9 𝛼⟩;Right 𝑦 ↦→ ⟨𝑦 | | Left o

9 𝛼⟩}

used to implicitly produce some result Ð we use a Match, which forms a new consumer implicitly
expecting an input of type 𝑋 ⊕ 𝑌 . The Match consumer has two branches pattern-matching on
its implicit input Ð one for each possibility between Left and Right Ð and because consumers
have no implicit output, both possible branches lead to commands. In either case, the swapped
sum value is explicitly łreturnedž (that is, passed via a command) to 𝛼 , which gives a name to the
previously-implicit output of the whole operation.

Under our analysis of comparing different structures of logic Ð and their impact on their corre-
sponding programs Ð natural deduction has only right rules. In other words, every rule of natural
deduction is concerned with concluding the truth of propositions (traditionally written on the
right-hand side of the hypothetical turnstyle ⊢, hence the name łrightž). By the proofs-as-programs
paradigm, this corresponds to the fact that every primitive tool that typical functional languages
have for working with its various types of information Ð both introductions and eliminations
Ð are inherently concerned with producing something. The constructors Left and Right produce

unique values of the sum type 𝑋 ⊕ 𝑌 . The Case expression uses an 𝑋 ⊕ 𝑌 value, yes, but only
in the service of producing some other result (which may not necessarily be another sum type).
In contrast, the application of the sequent calculus as the basis for a programming language has
revealed a different way of organizing programs. Instead, it pairs rules working on the right (which
look just like natural deduction’s introduction rules) with rules working on the left. These left rules
can be seen as ways to refute propositions, which are concerned with the falsehood of propositions
(or equivalently, with assumed truth of propositions, traditionally written on the left-hand side of ⊢,
hence the name łleftž). But importantly, no matter which side of the divide the rules are focused,
the sequent calculus has only introduction rules.

We can compare these two logical styles of programming Ð one based on natural deduction and
the other on the sequent calculus Ð by modifying the elimination rule slightly. When in the context
of a command with an explicit consumer named 𝛼 , a Case does not need to implicitly produce
some result, but can instead indicate what command to execute next by sending either result to 𝛼 .
In effect, this łabsorbsž the consumer 𝛼 into the Case like so:

⟨Case 𝑒 {Left 𝑥 ↦→ 𝑒1; Right 𝑦 ↦→ 𝑒2} | | 𝛼⟩ = Case 𝑒 {Left 𝑥 ↦→ ⟨𝑒1 | | 𝛼⟩;Right 𝑦 ↦→ ⟨𝑒2 | | 𝛼⟩}

With this in mind, we present the two styles of sum-swapping in Table 1, in each case connecting
an input 𝑧 : 𝑋 ⊕ 𝑌 to an output 𝛼 : 𝑌 ⊕ 𝑋 . The first line uses only right rules (both introduction
and eliminations on the right) in a typical functional style. The next line illustrates how the same
program can be written using only introduction rules (both on the left and the right) in sequent
style. The gray parts indicate how we can connect the program to an explicitly given producer 𝑧.
But what about other combinations of rules? If we can make due with only right rules or only

introductions, can we also write the same program using only left rules and only eliminations?
Yes! The third line shows again the same program but this time using only left rules. Left o

9 𝛼 and
Right o

9 𝛼 are the left elimination rules for a consumer 𝛼 of type 𝑌 ⊕ 𝑋 . Left o
9 𝛼 should be read as:
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Table 2. Computation from 𝑥 : (⊤ & 𝑋 ) & ⊤ to 𝛼 : ⊥ ⊕ ((𝑋 ⊕ ⊥) ⊕ ⊥)

Calculus Program Program Structure

Right ⟨Right (Left (Left (Snd (Fst 𝑥))) | | 𝛼⟩ 𝛼 outside-in, 𝑥 inside-out
Intro ⟨𝑥 | | Fst o

9 (Snd o
9 �̃�𝑦.⟨Right (Left (Left 𝑦)) | | 𝛼⟩)⟩ 𝑥 outside-in, 𝛼 outside-in

Left ⟨𝑥 | | Fst o
9 (Snd o

9 (Left o
9 (Left o

9 (Right o
9 𝛼))))⟩ 𝑥 outside-in, 𝛼 inside-out

Elim ⟨Snd (Fst 𝑥) | | Left o
9 (Left o

9 (Right o
9 𝛼))⟩ 𝛼 inside-out, 𝑥 inside-out

Inject the implicit value into the left component of a sum and then continue with 𝛼 .2 Finally, the
last line shows how the program can be formulated using only elimination rules. As we will later
see, every program can be written in each of these styles, and there is a simple and systematic way
to transition between them.
But what difference does it make which style we choose?
One of the main principles of programming that is taught in most introductory programming

courses (such as Felleisen et al. [2001]) is that the structure of a program follows the structure of
its input. A less common but equally valid principle is that the structure of a program follows the
structure of its output [Gibbons 2021]. Both styles can also be reversed in that a program may also
be łinside-outž, that is, it follows the structure of the input or output from the inside to the outside
and not vice versa. Such a structure is common, for instance, in continuation-passing style. The
choice of style has a major influence on the modularity properties of the program: How easily it
can be read and understood, how extensible it is, and so forth.
The observation that motivated this work is that the choice of rules determines which of these

styles our programs will naturally have. We illustrate this in Table 2, which shows four ways
of projecting out of a nested product type (⊤ & 𝑋 ) & ⊤ and injecting into a nested sum type
⊥ ⊕ ((𝑋 ⊕ ⊥) ⊕ ⊥). Our interest here is in four different calculi corresponding exactly to the four
different program styles illustrated in Table 2.

The Intro variant uses Curien and Herbelin [2000]’s �̃� operator to reify the currently consumed
value as a variable, which brings us to the last difference between the calculi that we want to point
out. Producer expressions have explicit inputs (given by variables) and an implicit output (the
current continuation).3 Consumer expressions have explicit outputs (given by covariables) and an
implicit input. Whenever we need to construct programs where the flow of the respective implicit
input/output does not match the nesting structure of the program, we need to resort to 𝜇 or �̃�
operators to reify that implicit input/output.
Here is another example: With right elimination rules, the composition of two functions 𝑔

and ℎ is easy to express: ⟨ℎ (𝑔 𝑥) | | 𝛼⟩. However, when we have to express the same program
using the left introduction rule for functions instead (which constructs a pair 𝑒 · 𝑓 consisting of a
function argument 𝑒 and a consumer 𝑓 for the function result), we have to express the program as
⟨𝑔 | | 𝑥 · (�̃�𝑦.⟨ℎ | | 𝑦 · 𝛼⟩)⟩. The łintermediate resultž 𝑔 𝑥 must be given a name 𝑦 because the flow of
data does not correspond to the structure of the left introduction rule.

Last but not least, let’s consider how modularity and extensibility depend on the program style
we choose. We analyze the nesting structure of the term in relation to the nesting structure of
the type. Informally, outside-in means that the term is nested similar to the type: subterms of the
type correspond to subterms of the term. Inside-out means that inner nodes of the term structure

2The o
9 operator can be thought of as left-to-right composition, i.e. 𝑓 o

9 𝑔 means łapply 𝑓 , then 𝑔.ž The symbol was chosen to

be a combination of regular right-to-left composition ◦ and a semicolon.
3In this example, we could have alternatively reified in the other direction using the dual 𝜇 operator, as

⟨Right (Left (Left 𝜇𝛽. ⟨𝑥 | | Fst o
9 (Snd o

9 𝛽) ⟩)) | | 𝛼 ⟩. These two commands are contextually equivalent to one another.
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Syntax

𝑇 F 𝑋 Types

𝑒 F 𝑥 | 𝜇𝛼.𝑐 Producers

𝑓 F 𝛼 | �̃�𝑥 .𝑐 Consumers

𝑐 F ⟨𝑒 | | 𝑓 ⟩ Commands

𝑣 F 𝑥 Values

E[] F 𝜖 Focusing Context

F [] F 𝜖 Cofocusing Context

Γ F 𝑥 : 𝑇, Γ | 𝜖 Producer Context

Δ F 𝛼 : 𝑇,Δ | 𝜖 Consumer Context

Reduction

⟨𝑣 | | �̃�𝑥 .𝑐⟩ ⊲�̃� 𝑐{𝑥 := 𝑣}

⟨𝜇𝛼.𝑐 | | 𝑓 ⟩ ⊲𝜇 𝑐{𝛼 := 𝑓 }

In 𝜍 rules, 𝑥 is fresh, 𝑒 ∉ 𝑣 .

⟨E[𝑒] | | 𝑓 ⟩ ⊲𝜍 ⟨𝑒 | | �̃�𝑥 .⟨E[𝑥] | | 𝑓 ⟩⟩

⟨𝑣 | | F [𝑒]⟩ ⊲𝜍 ⟨𝑒 | | �̃�𝑥 .⟨𝑣 | | F [𝑥]⟩⟩

Typing rules

𝑥 : 𝑇 ∈ Γ

Γ ⊢ 𝑥 : 𝑇 | Δ
(R-Var)

𝛼 : 𝑇 ∈ Δ

Γ | 𝛼 : 𝑇 ⊢ Δ
(L-Var)

𝑐 : (Γ ⊢ 𝛼 : 𝑇,Δ)

Γ ⊢ 𝜇𝛼.𝑐 : 𝑇 | Δ
(R-𝜇)

𝑐 : (𝑥 : 𝑇, Γ ⊢ Δ)

Γ | �̃�𝑥 .𝑐 : 𝑇 ⊢ Δ
(L-𝜇)

Γ ⊢ 𝑒 : 𝑇 | Δ

Γ | 𝑓 : 𝑇 ⊢ Δ

⟨𝑒 | | 𝑓 ⟩ : Γ ⊢ Δ
(Cut)

Fig. 2. Core language

represent outer nodes of the type structure. In general, introduction rules yield terms nesting
outside-in because the introduced type appears in the conclusion of the rule, while elimination
rules induce an inside-out nesting as the eliminated type occurs in the premise of the rule.
When we use elimination forms on the left to introduce a type on the right or vice-versa

we therefore reverse the nesting structure of the program and thereby also alter its modularity
properties.

Consider the programs in Table 2 again. In the right calculus row, we destruct 𝑥 inside-out with
right elimination rules and then construct a producer with the type required by 𝛼 outside-in using
right introduction rules. The situation is reversed in the left calculus row. Here we destruct the
continuation 𝛼 inside-out with left elimination rules and construct a continuation with the type
required by 𝑥 outside-in using left introduction rules. Similarly, we can get any other combination
of nesting orders by choosing one of the other calculi.
To summarize, having a choice of all four kinds of rules makes it easier for the programmer

to choose a program structure that has the desired modularity and extensibility properties and
maximizes the usage of implicit producers/consumers to avoid the naming of intermediate results
and the associated CPS-like program structure.

3 INTRODUCTION VERSUS ELIMINATION, LEFT VERSUS RIGHT

In this and the next section, we present our language framework, divided into logical steps and
parts. As the first step, we present a core language of inputs, outputs, and interactions, without any
logical connectives4 (Figure 2).
As usual in presentations of computational sequent calculi, we have three kinds of sequents:

Γ ⊢ 𝑒 : 𝑇 | Δ describes a producer term 𝑒 that produces an output of type 𝑇 in variable context Γ
and covariable context Δ. Symmetrically, Γ | 𝑓 : 𝑇 ⊢ Δ describes a consumer term 𝑓 that consumes

4The core is similar to the presentation in Sec. 4 of Downen and Ariola [2018]
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an input of type 𝑇 . Finally, a command 𝑐 : (Γ ⊢ Δ) describes a complete and executable program.
The core language only contains cut commands ⟨𝑒 | | 𝑓 ⟩.

With regard to reduction, we opt to use the standard call-by-value evaluation strategy, which
involves prioritizing producers before consumers in cuts [Downen and Ariola 2018]. Alternatively,
we could have chosen call-by-name evaluation in the standardway by reversing this priority [Wadler
2003]. The purpose of the focusing contexts E and F (which are empty in the core language) and
the ⊲𝜍 reduction rules are to push pending computations embedded in subterms to the top-level.
This is also standard [Downen and Ariola 2018; Wadler 2003].

In Figure 3 we extend the language with three connectives:→ (functions), ⊕ (positive sums), and
⊗ (positive products)5. The adjective łpositivež comes from polarized type theory [Andreoli 1992;
Zeilberger 2009] and denotes data types that are defined via constructors, as opposed to negative
types, which are codata types that are defined via destructors. Positive types are evaluated eagerly,
when constructed, whereas negative types are evaluated on demand, when they are destructed. In
this paper, we use blue for positive and red for negative connectives.
All connectives come with all four kinds of rules: introduction and elimination, both left and

right. Like in linear logic, we make a clear distinction between positive and negative connectives
(the latter will be shown later); it turns out that for our bi-expressibility property (introduced in
Section 4) it is essential that rules do not duplicate or destroy information. That property also
necessitates a few generalizations of standard rules.

For instance, the syntax of 𝜆 abstraction is 𝜆(𝑥 · 𝛼).𝑐 rather than 𝜆𝑥.𝑒 ; the latter can be encoded
as 𝜆𝑥.𝑒 := 𝜆(𝑥 · 𝛼).⟨𝑒 | | 𝛼⟩. The left introduction rule for → consists of a function argument and
a consumer for the function’s returned result. The left elimination rule allows us to inspect both
components of that pair, yielding a command.
The rule R-⊕-Intro𝑖 is standard. R-⊕-Elim uses again commands in its branches and is in

fact itself a command. An encoding for the more standard Case 𝑒 {In𝑖 𝑥𝑖 ↦→ 𝑒𝑖 } can be given as

𝜇𝛼.(Case 𝑒 {In𝑖 𝑥𝑖 ↦→ ⟨𝑒𝑖 | | 𝛼⟩}). The reason for the deviation from the standard is symmetry with
the L-⊕-Intro rule, which has the same structure except that the value to be pattern-matched on
is implicit. L-⊕-Elim𝑖 has also been designed to be symmetric to R-⊕-Intro𝑖 .

The rules for ⊗ follow the same design principles. Of particular note are the L-⊗-Elim𝑖 rules. Their
names Handle𝑖 are motivated by ` (the dual of ⊗), whose right elimination rules are reminiscent
of error handlers as shown in Figure 1.

The reduction rules cover only the introduction forms of the constructs. We will see in the next
section why that is sufficient.
This language and all its extensions we are about to present, has four subcalculi identified by

considering the languages having only introduction rules (the Intro calculus), only elimination
rules (the Elim calculus), only right rules (the Right calculus), or only left rules (the Left calculus).

We have proven (mechanized in Coq) standard type safety theorems for this language, but before
we can talk about the details we need to introduce bi-expressibility.

5In the formal calculus, we use the constructor names In1/In2 and Out1/Out2 instead of Left/Right and Fst/Snd for both

the ⊕ and the & type to facilitate our exposition of duality in Section 5. A version of the examples from Section 2 in formal

calculus syntax can be found in Appendix A.
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Syntax

𝑇 F . . . | 𝑇 →𝑇 | 𝑇 ⊕ 𝑇 | 𝑇 ⊗ 𝑇

𝑒 F . . . | 𝜆(𝑥 · 𝛼).𝑐 | 𝑒 𝑒 | In𝑖 𝑒 | [𝑒, 𝑒]

𝑓 F . . . | 𝑒 · 𝑓 | Match {In𝑖 𝑥𝑖 ↦→ 𝑐𝑖 } | Out𝑖 𝑓 | Match {[𝑥, 𝑥] ↦→ 𝑐} | Handle𝑖 𝑓 with 𝑒

𝑐 F . . . | Case 𝑓 {𝑥 · 𝛼 ↦→ 𝑐} | Case 𝑒 {In𝑖 𝑥𝑖 ↦→ 𝑐𝑖 } | Case 𝑒 {[𝑥, 𝑥] ↦→ 𝑐}

𝑣 F . . . | 𝜆(𝑥 · 𝛼).𝑐 | In𝑖 𝑣 | [𝑣, 𝑣]

E[] F . . . | [□, 𝑒] | [𝑣,□] | In𝑖 □

F [] F . . . | □ · 𝑓

Typing

Γ ⊢ 𝑒 : 𝑇1 | Δ

Γ | 𝑓 : 𝑇2 ⊢ Δ

Γ | 𝑒 · 𝑓 : 𝑇1 →𝑇2 ⊢ Δ
(L-→-Intro)

𝑐 : (𝑥 : 𝑇1, Γ ⊢ 𝛼 : 𝑇2,Δ)

Γ ⊢ 𝜆(𝑥 · 𝛼).𝑐 : 𝑇1 →𝑇2 | Δ
(R-→-Intro)

Γ | 𝑓 : 𝑇1 →𝑇2 ⊢ Δ

𝑐 : (Γ, 𝑥 : 𝑇1 ⊢ 𝛼 : 𝑇2,Δ)

Case 𝑓 {𝑥 · 𝛼 ↦→ 𝑐} : (Γ ⊢ Δ)
(L-→-Elim)

Γ ⊢ 𝑒1 : 𝑇1 →𝑇2 | Δ

Γ ⊢ 𝑒2 : 𝑇1 | Δ

Γ ⊢ 𝑒1 𝑒2 : 𝑇2 | Δ
(R-→-Elim)

∀𝑖, 𝑐𝑖 : (Γ, 𝑥𝑖 : 𝑇𝑖 ⊢ Δ)

Γ | Match {In𝑖 𝑥𝑖 ↦→ 𝑐𝑖 } : 𝑇1 ⊕ 𝑇2 ⊢ Δ

(L-⊕-Intro)

Γ ⊢ 𝑒 : 𝑇𝑖 | Δ

Γ ⊢ In𝑖 𝑒 : 𝑇1 ⊕ 𝑇2 | Δ
(R-⊕-Intro𝑖 )

Γ | 𝑓 : 𝑇1 ⊕ 𝑇2 ⊢ Δ

Γ | Out𝑖 𝑓 : 𝑇𝑖 ⊢ Δ
(L-⊕-Elim𝑖 )

Γ ⊢ 𝑒 : 𝑇1 ⊕ 𝑇2 | Δ

∀𝑖, 𝑐𝑖 : (Γ, 𝑥𝑖 : 𝑇𝑖 ⊢ Δ)

Case 𝑒 {In𝑖 𝑥𝑖 ↦→ 𝑐𝑖 } : (Γ ⊢ Δ)
(R-⊕-Elim)

𝑐 : (𝑥 : 𝑇1, 𝑦 : 𝑇2, Γ ⊢ Δ)

Γ | Match {[𝑥,𝑦] ↦→ 𝑐} : 𝑇1 ⊗ 𝑇2 ⊢ Δ

(L-⊗-Intro)

Γ ⊢ 𝑒1 : 𝑇1 | Δ

Γ ⊢ 𝑒2 : 𝑇2 | Δ

Γ ⊢ [𝑒1, 𝑒2] : 𝑇1 ⊗ 𝑇2 | Δ
(R-⊗-Intro)

Γ | 𝑓 : 𝑇1 ⊗ 𝑇2 ⊢ Δ

Γ ⊢ 𝑒 : 𝑇𝑖 | Δ

Γ | Handle𝑖 𝑓 with 𝑒 : 𝑇2−𝑖+1 ⊢ Δ
(L-⊗-Elim𝑖 )

Γ ⊢ 𝑒 : 𝑇1 ⊗ 𝑇2 | Δ

𝑐 : (𝑥 : 𝑇1, 𝑦 : 𝑇2, Γ ⊢ Δ)

Case 𝑒 {[𝑥,𝑦] ↦→ 𝑐} : (Γ ⊢ Δ)
(R-⊗-Elim)

Reduction

⟨𝜆(𝑥 · 𝛼).𝑐 | | 𝑣 · 𝑓 ⟩ ⊲𝛽 𝑐{𝑥 := 𝑣, 𝛼 := 𝑓 }

⟨ In𝑗 𝑣 | | Match {In𝑖 𝑥𝑖 ↦→ 𝑐𝑖 } ⟩ ⊲𝛽 𝑐 𝑗 {𝑥 𝑗 := 𝑣}

⟨[𝑣1, 𝑣2] | | Match {[𝑥,𝑦] ↦→ 𝑐}⟩ ⊲𝛽 𝑐{𝑥 := 𝑣1, 𝑦 := 𝑣2}

Fig. 3. Syntax, typing and reduction for functions, positive sums, and positive products
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4 BI-EXPRESSIBILITY AND SOUNDNESS

Our language has been designed in such a way that all four sub-calculi are in a sense equally
powerful. This is made precise in Figure 4, which shows that each typing rule is derivable using
only core constructs and the diagonally opposing rule (left intro is diagonally opposing to right
elim and vice versa left elim to right intro):

Theorem 4.1 (Bi-Expressibility). Every typing rule of a connective can be encoded using the

diagonally opposing rule and core constructs only.

Proof. Simple inspection and type-checking of the encoding rules in Figure 4. □

Corollary 4.2 (Subcalculus Restriction). Given any well-typed command 𝑐 : (Γ ⊢ Δ), producer

Γ ⊢ 𝑒 : 𝑇 | Δ, or consumer Γ | 𝑓 : 𝑇 ⊢ Δ and any subcalculus ℭ ∈ {Intro, Elim, Left, Right}, there exists

a translation result 𝑐 ′ : (Γ ⊢ Δ), Γ ⊢ 𝑒 ′ : 𝑇 | Δ, or Γ | 𝑓 ′ : 𝑇 ⊢ Δ which uses only the syntax available

in subcalculus ℭ.

Γ ⊢ 𝑒 : 𝑇1 | Δ

Γ | 𝑓 : 𝑇2 ⊢ Δ

Γ | �̃�𝑥 .⟨𝑥 𝑒 | | 𝑓 ⟩ : 𝑇1 →𝑇2 ⊢ Δ
(L-→-Intro)

𝑐 : (𝑥 : 𝑇1, Γ ⊢ 𝛼 : 𝑇2,Δ)

Γ ⊢ 𝜇𝛽.Case 𝛽 {𝑥 · 𝛼 ↦→ 𝑐} : 𝑇1 →𝑇2 | Δ
(R-→-Intro)

Γ | 𝑓 : 𝑇1 →𝑇2 ⊢ Δ

𝑐 : (Γ, 𝑥 : 𝑇1 ⊢ 𝛼 : 𝑇2,Δ)

⟨𝜆(𝑥 · 𝛼).𝑐 | | 𝑓 ⟩ : (Γ ⊢ Δ)
(L-→-Elim)

Γ ⊢ 𝑒1 : 𝑇1 →𝑇2 | Δ

Γ ⊢ 𝑒2 : 𝑇1 | Δ

Γ ⊢ 𝜇𝛼.⟨𝑒1 | | 𝑒2 · 𝛼⟩ : 𝑇2 | Δ
(R-→-Elim)

∀𝑖, 𝑐𝑖 : (Γ, 𝑥𝑖 : 𝑇𝑖 ⊢ Δ)

Γ | �̃�𝑥 . Case 𝑥 {In𝑖 𝑥𝑖 ↦→ 𝑐𝑖 } : 𝑇1 ⊕ 𝑇2 ⊢ Δ

(L-⊕-Intro)

Γ ⊢ 𝑒 : 𝑇𝑖 | Δ

Γ ⊢ 𝜇𝛼. ⟨ 𝑒 | | Out𝑖 𝛼 ⟩ : 𝑇1 ⊕ 𝑇2 | Δ
(R-⊕-Intro𝑖 )

Γ | 𝑓 : 𝑇1 ⊕ 𝑇2 ⊢ Δ

Γ | �̃�𝑥 . ⟨ In𝑖 𝑥 | | 𝑓 ⟩ : 𝑇𝑖 ⊢ Δ
(L-⊕-Elim𝑖 )

Γ ⊢ 𝑒 : 𝑇1 ⊕ 𝑇2 | Δ

∀𝑖, 𝑐𝑖 : (Γ, 𝑥𝑖 : 𝑇𝑖 ⊢ Δ)

⟨ 𝑒 | | Match {In𝑖 𝑥𝑖 ↦→ 𝑐𝑖 } ⟩ : (Γ ⊢ Δ)

(R-⊕-Elim)

𝑐 : (𝑥 : 𝑇1, 𝑦 : 𝑇2, Γ ⊢ Δ)

Γ | �̃�𝑧.Case 𝑧 {[𝑥,𝑦] ↦→ 𝑐} : 𝑇1 ⊗ 𝑇2 ⊢ Δ

(L-⊗-Intro)

Γ ⊢ 𝑒1 : 𝑇1 | Δ

Γ ⊢ 𝑒2 : 𝑇2 | Δ

Γ ⊢ 𝜇𝛼.⟨𝑒1 | | Handle2 𝛼 with 𝑒2 ⟩ : 𝑇1 ⊗ 𝑇2 | Δ
(R-⊗-Intro)

Γ | 𝑓 : 𝑇1 ⊗ 𝑇2 ⊢ Δ

Γ ⊢ 𝑒 : 𝑇1 | Δ

Γ | �̃�𝑥 .⟨[𝑒, 𝑥] | | 𝑓 ⟩ : 𝑇2 ⊢ Δ
(L-⊗-Elim1)

Γ | 𝑓 : 𝑇1 ⊗ 𝑇2 ⊢ Δ

Γ ⊢ 𝑒 : 𝑇2 | Δ

Γ | �̃�𝑥 .⟨[𝑥, 𝑒] | | 𝑓 ⟩ : 𝑇1 ⊢ Δ
(L-⊗-Elim2)

Γ ⊢ 𝑒 : 𝑇1 ⊗ 𝑇2 | Δ

𝑐 : (𝑥 : 𝑇1, 𝑦 : 𝑇2, Γ ⊢ Δ)

⟨𝑒 | | Match{[𝑥,𝑦] ↦→ 𝑐}⟩ : (Γ ⊢ Δ)

(R-⊗-Elim)

Fig. 4. Bi-Expressibility: Diagonal encodings. New (co)variable names are always assumed to be fresh.
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Proof. Wegive a translation function (formalized in Coq) that restricts the command, producer or
consumer to the subcalculusℭ based on Theorem 4.1 and show that it preserves type soundness. □

One thing to note about the encodings is that, when applied to a full program, they will introduce
administrative redexes. For instance, when applying the encodings to the examples in Section 2
(we now use the examples in formal calculus syntax from Appendix A), then the encoding of the
right elimination construct by left introduction gives us directly the second line, whereas applying
the encoding of right introduction by left elimination gives as an administrative redex of the form
⟨𝜇𝛽.⟨𝑥 | | Out2 𝛽⟩ | | 𝛼⟩, which requires a reduction step to ⟨𝑥 | | Out2 𝛼⟩ to yield the third line.
Another thing to note is that the notion of value depends on the subcalculus. Since we only define

reduction for the Intro calculus, our value definition is tailored for it. A term like a 𝜆-abstraction is
a value in the Intro calculus; when it gets encoded into the Left or Elim calculus by the encoding
rule, it turns into a 𝜇-abstraction - which looks superficially as if we would turn a value into a
non-value. But this is misleading, since each calculus would have its own definition of value, if we
would define them completely separately. Instead, we use bi-expressibility to give reduction rules
for the introduction constructs only: We assume that the elimination rules are łdesugaredž using
the encodings in Figure 4.
For the language where the elimination forms are encoded as in Figure 4, we have also proven

(in Coq) standard progress and preservation theorems.

Theorem 4.3 (Preservation). For all commands 𝑐 and all typing contexts Γ and Δ, if 𝑐 : (Γ ⊢ Δ)

and 𝑐 ⊲ 𝑐 ′, then 𝑐 ′ : Γ ⊢ Δ.

For the statement of the progress theorem, it is convenient to have a Done command with typing
axiom Done : Γ ⊢ Δ, such that there are non-trivial closed commands:

Theorem 4.4 (Progress). For all closed commands 𝑐 and all typing contexts Γ and Δ, if 𝑐 : (Γ ⊢ Δ),

then either 𝑐 = Done or there exists 𝑐 ′ such that 𝑐 ⊲ 𝑐 ′.

Furthermore, reduction is deterministic:

Theorem 4.5 (Deterministic reduction). For all commands 𝑐 , 𝑐 ′, 𝑐 ′′ and all typing contexts Γ

and Δ, if 𝑐 : (Γ ⊢ Δ), 𝑐 ⊲ 𝑐 ′, and 𝑐 ⊲ 𝑐 ′′, then 𝑐 ′ = 𝑐 ′′.

Let us briefly illustrate why bi-expressibility requires some generalizations of introduction or
elimination forms of standard constructs; in particular, why we have replaced expressions by
commands in some places. As an example, the standard right introduction rule for → is 𝜆𝑥.𝑒 ,
whereas we use 𝜆(𝑥 · 𝛼).𝑐 . If we look at R-→-Intro in Figure 4, then 𝜆𝑥.𝑒 could be encoded
as 𝜇𝛽.Case 𝛽 {𝑥 · 𝛼 ↦→ ⟨𝑒 | | 𝛼⟩}. However, L-→-Elim would then be stronger than R-→-Intro

and the L-→-Elim encoding in Figure 4 would no longer work; if we wanted to reverse the
transformation, we cannot guarantee that 𝑒 does not have 𝛼 as free variable. Weakening L-→-Elim

to Case 𝑓 {𝑥 · 𝛼 ↦→ 𝑓 } instead of Case 𝑓 {𝑥 · 𝛼 ↦→ 𝑐} would not help; both constructs would be
weaker, but they would not be bi-expressible. Case 𝑓 {𝑥 · 𝛼 ↦→ 𝑒}, on the other hand, would be
rather useless in the left calculus, since the only valid (non-𝜇) producer expression is a variable.

5 PROOF/REFUTATION DUALITY

Our setting with all four kinds of rules lets us use the proof/refutation duality [Tranchini 2012].
The proof/refutation duality is a duality between proofs of a statement and refutations of the dual
statement. Tranchini [2012] defined a natural deduction calculus of refutation which is completely
isomorphic to the standard natural deduction calculus of proofs. For instance, the introduction and
elimination rules for refutations of disjunctions (written ∨𝑅), are identical to the ones for proofs of
conjunctions Ð another facet of the duality between disjunction and conjunction:
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Γ ⊢ 𝑇1 Γ ⊢ 𝑇2

Γ ⊢ 𝑇1 ∨𝑅 𝑇2
(∨𝑅-Intro)

Γ ⊢ 𝑇1 ∨𝑅 𝑇2

Γ ⊢ 𝑇𝑖
(∨𝑅-Elim𝑖 )

The introduction rule should be read as łif 𝑇1 is false and 𝑇2 is false, then 𝑇1 ∨𝑇2 is falsež, the
elimination rules as łif𝑇1∨𝑇2 is false, then𝑇𝑖 is falsež. Tranchini has shown that a full (intuitionistic)
refutation calculus containing all standard propositional connectives can be defined in such a way
that the rules are mirrors of the respective dual connectives in the proof calculus. The duality
between disjunction and conjunction as well as between the logical constants ⊤ and ⊥ are standard;
dualizing implication requires the less common notion of co-implication [Tranchini 2012], also
known as subtraction [Crolard 2004] or difference [Curien and Herbelin 2000] (sometimes with
reversed order of arguments).
Tranchini’s work is purely in the logic domain and does not discuss programming, but from

the perspective of programming, a refutation calculus can be seen as a language of consumers
or continuations. The close symmetry between the corresponding proof and refutation calculi
suggests that the term language of the proof calculus can also be used as a term language of the
refutation calculus. In other words, we can have different interpretations of the same term: once as
a producer and once as a consumer.
Figure 5 illustrates the idea by defining typing rules for −≺≺, &, and `, the duals of→, ⊕, and ⊗,

respectively. What is noteworthy about these rules is that they are completely determined by the
typing rules of their respective duals. In fact, the rules in Figure 5 could be replaced by fusing the
syntactic categories 𝑒 and 𝑓 ,

𝑒 F 𝑥 | 𝜇𝑥 .𝑐 | �̃�𝑥 .𝑐 | 𝑒 · 𝑒 | Match {In𝑖 𝑥𝑖 ↦→ 𝑐𝑖 } | Out𝑖 𝑒 | Match {[𝑥, 𝑥] ↦→ 𝑐}

| Handle𝑖 𝑒 with 𝑒 | 𝜆(𝑥 · 𝑧) .𝑐 | 𝑒 𝑒 | In𝑖 𝑒 | [𝑒, 𝑒]

𝑥, 𝛼 F identifier

and adding these two rules
Δ
◦ | 𝑒◦ : 𝑇 ◦ ⊢ Γ

◦

Γ ⊢ 𝑒 : 𝑇 | Δ

Δ
◦ ⊢ 𝑒◦ : 𝑇 ◦ | Γ◦

Γ | 𝑒 : 𝑇 ⊢ Δ

where 𝑇 ◦ is defined as

𝑋 ◦ = 𝑋

(𝑇1 →𝑇2)
◦ = 𝑇 ◦

1
−≺≺𝑇 ◦

2
(𝑇1 −≺≺𝑇2)

◦ = 𝑇 ◦
1
→𝑇 ◦

2

(𝑇1 ⊗ 𝑇2)
◦ = 𝑇 ◦

1
`𝑇 ◦

2
(𝑇1 `𝑇2)

◦ = 𝑇 ◦
1
⊗ 𝑇 ◦

2

(𝑇1 &𝑇2)
◦ = 𝑇 ◦

1
⊕ 𝑇 ◦

2
(𝑇1 ⊕ 𝑇2)

◦ = 𝑇 ◦
1
&𝑇 ◦

2
,

Γ
◦ is the obvious extension to typing contexts, and 𝑒◦ creates a copy of the expression that is

identical except that ⟨𝑒1 | | 𝑒2⟩
◦ = ⟨𝑒◦

2
| | 𝑒◦

1
⟩ where 𝑒 contains a command.

A fully shared and symmetric term syntax between producers and consumers would enable an
exciting new feature we call consumer/producer polymorphism. It becomes possible to have libraries
of code that can be used as both producers and consumers.

For instance, 𝜆-abstraction is the common way to abstract over certain code patterns, and that is
true regardless of whether the code consumes or produces values. A generic function like the one
for function composition, 𝜆𝑓 .𝜆𝑔.𝜆𝑥 .𝑓 (𝑔 𝑥), which desugars to

comp = 𝜆(𝑓 · 𝛼).⟨𝜆(𝑔 · 𝛽) .⟨𝜆(𝑥 · 𝛾).⟨𝑓 (𝑔 𝑥) | | 𝛾⟩ | | 𝛽⟩ | | 𝛼⟩

can be used both as a producer of type (𝑌 → 𝑍 ) → (𝑋 → 𝑌 ) → 𝑋 → 𝑍 and, via

comp◦ = 𝜆(𝑓 · 𝛼).⟨𝛼 | | 𝜆(𝑔 · 𝛽).⟨𝛽 | | 𝜆(𝑥 · 𝛾).⟨𝛾 | | 𝑓 (𝑔 𝑥)⟩⟩⟩
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Syntax

𝑇 F . . . | 𝑇 −≺≺𝑇 | 𝑇 &𝑇 | 𝑇 `𝑇

𝑒 F . . . | 𝑓 · 𝑒 | Match {In𝑖 𝑥𝑖 ↦→ 𝑐𝑖 } | Out𝑖 𝑒 | Match {[𝑥, 𝑥] ↦→ 𝑐} | Handle𝑖 𝑒 with 𝑓

𝑓 F . . . | 𝜆(𝛼 · 𝑥).𝑐 | 𝑓 𝑓 | In𝑖 𝑓 | [𝑓 , 𝑓 ]

𝑐 F . . . | Case 𝑒 {𝛼 · 𝑥 ↦→ 𝑐} | Case 𝑓 {In𝑖 𝛼𝑖 ↦→ 𝑐𝑖 } | Case 𝑓 {[𝛼, 𝛼] ↦→ 𝑐}

𝑣 F . . . | 𝑓 · 𝑣 | Match {In𝑖 𝛼𝑖 ↦→ 𝑐𝑖 } | Match {[𝛼, 𝛼] ↦→ 𝑐}

E[] F . . . | 𝑓 · □

Typing

𝑐 : (𝑥 : 𝑇2, Γ ⊢ 𝛼 : 𝑇1,Δ)

Γ | 𝜆(𝛼 · 𝑥).𝑐 : 𝑇1 −≺≺𝑇2 ⊢ Δ
(L-−≺≺-Intro)

Γ | 𝑓 : 𝑇1 ⊢ Δ

Γ ⊢ 𝑒 : 𝑇2 | Δ

Γ ⊢ 𝑓 · 𝑒 : 𝑇1 −≺≺𝑇2 | Δ
(R-−≺≺-Intro)

Γ | 𝑓1 : 𝑇1 −≺≺𝑇2 ⊢ Δ

Γ | 𝑓2 : 𝑇1 ⊢ Δ

Γ | 𝑓1 𝑓2 : 𝑇2 ⊢ Δ
(L-−≺≺-Elim)

Γ ⊢ 𝑒 : 𝑇1 −≺≺𝑇2 | Δ

𝑐 : (𝑥 : 𝑇1, Γ ⊢ 𝛼 : 𝑇2,Δ)

Case 𝑒 {𝛼 · 𝑥 ↦→ 𝑐} : (Γ ⊢ Δ)
(R-−≺≺-Elim)

Γ | 𝑓 : 𝑇𝑖 ⊢ Δ

Γ | In𝑖 𝑓 : 𝑇1 &𝑇2 ⊢ Δ
(L-&-Intro𝑖 )

∀𝑖, 𝑐𝑖 : (Γ ⊢ 𝛼𝑖 : 𝑇𝑖 ,Δ)

Γ ⊢ Match {In𝑖 𝛼𝑖 ↦→ 𝑐𝑖 } : 𝑇1 &𝑇2 | Δ
(R-&-Intro)

Γ | 𝑓 : 𝑇1 &𝑇2 ⊢ Δ

∀𝑖, 𝑐𝑖 : (Γ ⊢ 𝛼𝑖 : 𝑇𝑖 ,Δ)

Case 𝑓 {In𝑖 𝛼𝑖 ↦→ 𝑐𝑖 } : (Γ ⊢ Δ)
(L-&-Elim)

Γ ⊢ 𝑒 : 𝑇1 &𝑇2 | Δ

Γ ⊢ Out𝑖 𝑒 : 𝑇𝑖 | Δ
(R-&-Elim𝑖 )

Γ | 𝑓1 : 𝑇1 ⊢ Δ

Γ | 𝑓2 : 𝑇2 ⊢ Δ

Γ | [𝑓1, 𝑓2] : 𝑇1 `𝑇2 ⊢ Δ
(L-`-Intro)

𝑐 : (Γ ⊢ 𝛼 : 𝑇1, 𝛽 : 𝑇2,Δ)

Γ ⊢ Match {[𝛼, 𝛽] ↦→ 𝑐} : 𝑇1 `𝑇2 | Δ
(R-`-Intro)

Γ | 𝑓 : 𝑇1 `𝑇2 ⊢ Δ

𝑐 : (Γ ⊢ 𝛼 : 𝑇1, 𝛽 : 𝑇2,Δ)

Case 𝑓 {[𝛼, 𝛽] ↦→ 𝑐} : (Γ ⊢ Δ)
(L-`-Elim)

Γ ⊢ 𝑒 : 𝑇1 `𝑇2 | Δ

Γ | 𝑓 : 𝑇𝑖 ⊢ Δ

Γ ⊢ Handle𝑖 𝑒 with 𝑓 : 𝑇2−𝑖+1 | Δ
(R-`-Elim𝑖 )

Reduction
⟨𝑓 · 𝑣 | | 𝜆(𝛼 · 𝑥).𝑐⟩ ⊲𝛽 𝑐{𝑥 := 𝑣, 𝛼 := 𝑓 }

⟨Match {In𝑖 𝛼𝑖 ↦→ 𝑐𝑖 } | | In𝑗 𝑓 ⟩ ⊲𝛽 𝑐 𝑗 {𝛼 𝑗 := 𝑓 }

⟨Match {[𝛼, 𝛽] ↦→ 𝑐} | | [𝑓1, 𝑓2]⟩ ⊲𝛽 𝑐{𝛼 := 𝑓1, 𝛼 := 𝑓2}

Fig. 5. Dual rules for −≺≺, &, and `
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as a consumer of type (𝑌−≺≺𝑍 )−≺≺ (𝑋−≺≺𝑌 )−≺≺𝑋−≺≺𝑍 . Similarly, a swap function of type (𝑋 ⊗𝑌 )→(𝑌 ⊗𝑋 )

can also be used as a cofunction of type (𝑋 `𝑌 ) −≺≺ (𝑌 `𝑋 ). Both are equally useful. Every program
can be used in two ways - an exciting avenue that we intend to explore more in future work.
In the design above, 𝑒◦ is not yet completely identical to 𝑒 . In an earlier design, we phrased

the calculus in such a way that the dualization operation on expressions is indeed the identity
function (by having statements where the producer/consumer side switch depending on whether
one abstracts over a 𝜇 or a �̃�), but this made the presentation more complicated in other ways. But
even without this, code could be reused in the form of łmacrož transformations or with a dedicated
language construct (say, a dual(𝑒) construct) where the interpreter takes care of switching the
sides when necessary. We leave the elaboration of these ideas to future work.

To summarize, the proof/refutation duality allows us to mechanically derive the syntax, typing
and reduction rules for the respective dual connective, and it opens a path towards the reuse of a
term as both a producer of a type and a consumer of its dual type.

6 EXTENSIONS

In this section, we consider some standard extensions of the calculi in the new light of having all
four rules and bi-expressibility.

The first extension we consider are the logical constants, which serve as units for products and
sums. Since we have two differently polarized products and two differently polarized sums, we
consequently need 4 different units whose rules are given in Figure 6. Following the standard
notation from linear logic, the unit for ⊗ is written 1, the unit for ⊕ is 0, the unit for & is ⊤, and
the unit for ` is ⊥. 1 is dual to ⊥ and 0 is dual to ⊤, hence both the syntax and the typing rules of
the respective dual connective follows mechanically like described in the previous section.

One of the exciting insights of linear logic is that the function type→ can be decomposed into a
combination of a negative sum ` and negation type. The decomposition of both negative functions
→ and positive cofunctions −≺≺ requires two different kinds of negations; negative negations ¬ and
positive negations ∼. The rules for both kinds of negations, which are dual to each other, are given
in Figure 7. With negation in place, we can very directly see that the type 𝑇1 →𝑇2 is isomorphic to
¬𝑇1 `𝑇2 :

𝜆(𝑥 · 𝛽).𝑐 = Match {[𝛼, 𝛽] ↦→ Case 𝛼 {Not 𝑥 ↦→ 𝑐}}

𝑒1 𝑒2 = Handle1 𝑒1 with (Not 𝑒2)

𝑒 · 𝑓 = [Not 𝑒, 𝑓 ]

Case 𝑓 {𝑥 · 𝛽 ↦→ 𝑐} = Case 𝑓 {[𝛼, 𝛽] ↦→ Case 𝛼 {Not 𝑥 ↦→ 𝑐}}

And, by duality, the same holds for 𝑇1 −≺≺𝑇2 and ∼𝑇1 ⊗ 𝑇2. It is also not hard to see that Not 𝑒 : ¬𝑇

is isomorphic to 𝑒 · triv : 𝑇 → ⊥ and Not 𝑓 : ∼𝑇 is isomorphic to 𝑓 · triv : 𝑇 −≺≺ 0.
With regard to universal and existential types, whose rules are given in Figure 8, it is pleasing to

see that the left elimination rule for universal types is basically the usual right elimination rule
for łopening an existential packagež, and the left elimination rule of existential types corresponds
to the usual type application right elimination rule for universal types. Of course, ∀ is dual to ∃,
and the duality is again reflected directly in the typing rules. Bi-expressibility follows the same
structure as bi-expressibility for functions.
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Syntax

𝑇 F . . . | 1 | 0 | ⊤ | ⊥

𝑒 F . . . | triv | Case 𝑒 {} | Match {triv ↦→ 𝑐} | Match {}

𝑓 F . . . | triv | Case 𝑓 {} | Match {triv ↦→ 𝑐} | Match {}

𝑐 F . . . | UnTriv 𝑓 | Case 𝑒 {triv ↦→ 𝑐} | UnTriv 𝑒 | Case 𝑓 {triv ↦→ 𝑐}

𝑣 F . . . | triv | Match {triv ↦→ 𝑐}
Typing

𝑐 : (Γ ⊢ Δ)

Γ | Match {triv ↦→ 𝑐} : 1 ⊢ Δ
(L-1-Intro)

Γ ⊢ triv : 1 | Δ
(R-1-Intro)

Γ | 𝑓 : 1 ⊢ Δ

UnTriv 𝑓 : (Γ ⊢ Δ)
(L-1-Elim)

Γ ⊢ 𝑒 : 1 | Δ

𝑐 : (Γ ⊢ Δ)

Case 𝑒 {triv ↦→ 𝑐} : (Γ ⊢ Δ)
(R-1-Elim)

Γ | Match {} : 0 ⊢ Δ
(L-0-Intro) no right introduction rule for 0

no left elimination rule for 0
Γ ⊢ 𝑒 : 0 | Δ

Case 𝑒 {} : (Γ ⊢ Δ)
(R-0-Elim)

no left introduction rule for ⊤
Γ ⊢ Match {} : ⊤ | Δ

(R-⊤-Intro)

Γ | 𝑓 : ⊤ ⊢ Δ

Case 𝑓 {} : (Γ ⊢ Δ)
(L-⊤-Elim) no right elimination rule for ⊤

Γ | triv : ⊥ ⊢ Δ
(L-⊥-Intro) 𝑐 : (Γ ⊢ Δ)

Γ ⊢ Match {triv ↦→ 𝑐} : ⊥ | Δ
(R-⊥-Intro)

Γ | 𝑓 : ⊥ ⊢ Δ

𝑐 : (Γ ⊢ Δ)

Case 𝑓 {triv ↦→ 𝑐} : (Γ ⊢ Δ)
(L-⊥-Elim)

Γ ⊢ 𝑒 : ⊥ | Δ

UnTriv 𝑒 : (Γ ⊢ Δ)
(R-⊥-Elim)

Reduction (no rules for ⊤ and 0)

⟨triv | | Match {triv ↦→ 𝑐}⟩ ⊲𝛽 𝑐 ⟨Match {triv ↦→ 𝑐} | | triv⟩ ⊲𝛽 𝑐

Bi-Expressibility (rules for ⊤ and ⊥ are analogous to those for 1 and 0)

𝑐 : (Γ ⊢ Δ)

Γ | �̃�𝑥 .Case 𝑥 {triv ↦→ 𝑐} : 1 ⊢ Δ

(L-1-Intro)
Γ ⊢ 𝜇𝛼.UnTriv 𝛼 : 1 | Δ

(R-1-Intro)

Γ | 𝑓 : 1 ⊢ Δ

⟨triv | | 𝑓 ⟩ : (Γ ⊢ Δ)
(L-1-Elim)

Γ ⊢ 𝑒 : 1 | Δ

𝑐 : (Γ ⊢ Δ)

⟨𝑒 | | Match {triv ↦→ 𝑐}⟩ : (Γ ⊢ Δ)

(R-1-Elim)

Γ | �̃�𝑥 .Case 𝑥 {} : 0 ⊢ Δ
(L-0-Intro) no right introduction rule for 0

no left elimination rule for 0
Γ ⊢ 𝑒 : 0 | Δ

⟨𝑒 | | Match {}⟩ : (Γ ⊢ Δ)
(R-0-Elim)

Fig. 6. Positive units 1, 0 and negative units ⊤, ⊥
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Syntax

𝑇 F . . . | ¬𝑇 | ∼𝑇

𝑒 F . . . | Not 𝑓 | Throw 𝑓 𝑓 | Match {Not 𝑥 ↦→ 𝑐} | Case 𝑒 {Not 𝛼 ↦→ 𝑐}

𝑓 F . . . | Not 𝑒 | Throw 𝑒 𝑒 | Match {Not 𝛼 ↦→ 𝑐} | Case 𝑓 {Not 𝑥 ↦→ 𝑐}

𝑣 F . . . | Not 𝑓

F [] F . . . | Not □

Typing

𝑐 : (Γ ⊢ 𝛼 : 𝑇,Δ)

Γ | Match {Not 𝛼 ↦→ 𝑐} : ∼𝑇 ⊢ Δ
(L-∼-Intro)

Γ | 𝑓 : 𝑇 ⊢ Δ

Γ ⊢ Not 𝑓 : ∼𝑇 | Δ
(R-∼-Intro)

Γ | 𝑓1 : ∼𝑇 ⊢ Δ

Γ | 𝑓2 : 𝑇 ⊢ Δ

Throw 𝑓1 𝑓2 : (Γ ⊢ Δ)
(L-∼-Elim)

Γ ⊢ 𝑒 : ∼𝑇 | Δ

𝑐 : (Γ ⊢ 𝛼 : 𝑇,Δ)

Case 𝑒 {Not 𝛼 ↦→ 𝑐} : (Γ ⊢ Δ)
(R-∼-Elim)

Γ ⊢ 𝑒 : 𝑇 | Δ

Γ | Not 𝑒 : ¬𝑇 ⊢ Δ
(L-¬-Intro)

𝑐 : (Γ, 𝑥 : 𝑇 ⊢ Δ)

Γ ⊢ Match {Not 𝑥 ↦→ 𝑐} : ¬𝑇 | Δ
(R-¬-Intro)

Γ | 𝑓 : ¬𝑇 ⊢ Δ

𝑐 : (Γ, 𝑥 : 𝑇 ⊢ Δ)

Case 𝑓 {Not 𝑥 ↦→ 𝑐} : (Γ ⊢ Δ)
(L-¬-Elim)

Γ ⊢ 𝑒1 : ¬𝑇 | Δ

Γ ⊢ 𝑒2 : 𝑇 | Δ

Throw 𝑒1 𝑒2 : (Γ ⊢ Δ)
(R-¬-Elim)

Reduction

⟨Not 𝑓 | | Match {Not 𝛼 ↦→ 𝑐}⟩ ⊲𝛽 𝑐{𝛼 ≔ 𝑓 }

⟨Match {Not 𝑥 ↦→ 𝑐} | | Not 𝑣} ⊲𝛽 𝑐{𝑥 ≔ 𝑣}

Bi-Expressibility

𝑐 : (Γ ⊢ 𝛼 : 𝑇,Δ)

Γ | 𝜇𝑥 .Case 𝑥 {Not 𝛼 ↦→ 𝑐} : ∼𝑇 ⊢ Δ

(L-∼-Intro)

Γ | 𝑓 : 𝑇 ⊢ Δ

Γ ⊢ �̃�𝛼 .Throw 𝛼 𝑓 : ∼𝑇 | Δ
(R-∼-Intro)

Γ | 𝑓1 : ∼𝑇 ⊢ Δ

Γ | 𝑓2 : 𝑇 ⊢ Δ

⟨Not 𝑓2 | | 𝑓1⟩ : (Γ ⊢ Δ)
(L-∼-Elim)

Γ ⊢ 𝑒 : ∼𝑇 | Δ

𝑐 : (Γ ⊢ 𝛼 : 𝑇,Δ)

⟨𝑒 | | Match {Not 𝛼 ↦→ 𝑐}⟩ : (Γ ⊢ Δ)
(R-∼-Elim)

Γ ⊢ 𝑒 : 𝑇 | Δ

Γ | 𝜇𝑥 .Throw 𝑥 𝑒 : ¬𝑇 ⊢ Δ
(L-¬-Intro)

𝑐 : (Γ, 𝑥 : 𝑇 ⊢ Δ)

Γ ⊢ �̃�𝛼 .Case 𝛼 {Not 𝑥 ↦→ 𝑐} : ¬𝑇 | Δ

(R-¬-Intro)

Γ | 𝑓 : ¬𝑇 ⊢ Δ

𝑐 : (Γ, 𝑥 : 𝑇 ⊢ Δ)

⟨Match {Not 𝑥 ↦→ 𝑐} | | 𝑓 ⟩ : (Γ ⊢ Δ)
(L-¬-Elim)

Γ ⊢ 𝑒1 : ¬𝑇 | Δ

Γ ⊢ 𝑒2 : 𝑇 | Δ

⟨𝑒1 | | Not 𝑒2⟩ : (Γ ⊢ Δ)
(R-¬-Elim)

Fig. 7. Extension with negation
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Syntax

𝑇 F . . . | ∀𝑋 .𝑇 | ∃𝑋 .𝑇

𝑒 F . . . | Λ{𝑋, 𝛼}.𝑐 | 𝑒 [𝑇 ] | {𝑇, 𝑒}

𝑓 F . . . | Λ{𝑋, 𝑥}.𝑐 | 𝑓 [𝑇 ] | {𝑇, 𝑓 }

𝑐 F . . . | Case 𝑓 {𝑋, 𝛼 ↦→ 𝑐} | Case 𝑒 {𝑋, 𝑥 ↦→ 𝑐}

𝑣 F . . . | Λ{𝑋, 𝛼}.𝑐 | {𝑇, 𝑣}

E[] F . . . | {𝑇,□}

Typing

Γ | 𝑓 : 𝑇2{𝑋 := 𝑇1} ⊢ Δ

Γ | {𝑇1, 𝑓 } : ∀𝑋 .𝑇2 ⊢ Δ
(L-∀-Intro)

𝑐 : 𝑋, Γ ⊢ 𝛼 : 𝑇,Δ

𝑋 ∉ 𝐹𝑉 (Γ ∪ Δ)

Γ ⊢ Λ{𝑋, 𝛼}.𝑐 : ∀𝑋 .𝑇 | Δ
(R-∀-Intro)

Γ | 𝑓 : ∀𝑋 .𝑇 ⊢ Δ

𝑐 : (𝑋, Γ ⊢ 𝛼 : 𝑇,Δ)

Case 𝑓 {𝑋, 𝛼 ↦→ 𝑐} : (Γ ⊢ Δ)
(L-∀-Elim)

Γ ⊢ 𝑒 : ∀𝑋 .𝑇 | Δ

Γ ⊢ 𝑒 [𝑇1] : 𝑇 {𝑋 := 𝑇1} | Δ
(R-∀-Elim)

𝑐 : (𝑥 : 𝑇, Γ ⊢ 𝑋,Δ)

𝑋 ∉ 𝐹𝑉 (Γ ∪ Δ)

Γ | Λ{𝑋, 𝑥}.𝑐 : ∃𝑋 .𝑇 ⊢ Δ
(L-∃-Intro)

Γ | 𝑒 : 𝑇2{𝑋 := 𝑇1} ⊢ Δ

Γ ⊢ {𝑇1, 𝑒} : ∃𝑋 .𝑇2 | Δ
(R-∃-Intro)

Γ | 𝑓 : ∃𝑋 .𝑇 ⊢ Δ

Γ | 𝑓 [𝑇1] : 𝑇 {𝑋 := 𝑇1} ⊢ Δ
(L-∃-Elim)

Γ ⊢ 𝑒 : ∃𝑋 .𝑇 | Δ

𝑐 : (𝑥 : 𝑇, Γ ⊢ 𝑋,Δ)

Case 𝑒 {𝑋, 𝑥 ↦→ 𝑐} : (Γ ⊢ Δ)
(R-∃-Elim)

Reduction

⟨Λ{𝑋, 𝛼}.𝑐 | | {𝑇, 𝑓 }⟩ ⊲𝛽 𝑐{𝑋 := 𝑇, 𝛼 := 𝑓 } ⟨{𝑇, 𝑣} | | Λ{𝑋, 𝑥}.𝑐⟩ ⊲𝛽 𝑐{𝑋 := 𝑇, 𝑥 := 𝑣}

Bi-Expressibility (Rules for ∃ are analogous to those for ∀)

Γ | 𝑓 : 𝑇2{𝑋 := 𝑇1} ⊢ Δ

Γ | �̃�𝑥 .⟨𝑥 [𝑇1] | | 𝑓 ⟩ : ∀𝑋 .𝑇2 ⊢ Δ
(L-∀-Intro)

𝑐 : 𝑋, Γ ⊢ 𝛼 : 𝑇,Δ

𝑋 ∉ 𝐹𝑉 (Γ ∪ Δ)

Γ ⊢ 𝜇𝛽.Case 𝛽 {𝑋, 𝛼 ↦→ 𝑐} : ∀𝑋 .𝑇 | Δ

(R-∀-Intro)

Γ | 𝑓 : ∀𝑋 .𝑇1 ⊢ Δ

𝑐 : (𝑋, Γ ⊢ 𝛼 : 𝑇1,Δ)

⟨Λ{𝑋, 𝛼}.𝑐 | | 𝑓 ⟩ : (Γ ⊢ Δ)
(L-∀-Elim)

Γ ⊢ 𝑒 : ∀𝑋 .𝑇 | Δ

Γ ⊢ 𝜇𝛼.⟨𝑒 | | {𝑇1, 𝛼}⟩ : 𝑇 {𝑋 := 𝑇1} | Δ
(R-∀-Elim)

Fig. 8. Extension with universal and existential types.

7 PROGRAMMING WITH ALL RULES

In this section, we present a few examples that illustrate the utility of polarized connectives and
the flexibility of having all rules. We also revisit the filter example from Section 1.

7.1 Error Handling

The first example serves to illustrate both the value of having first-class consumers, and the
naturality of programs using rules from all calculi. Consider the familiar problem of error-handling.
Suppose we have three functions 𝑓 : 𝐴 → 𝐵 ∨𝐸, 𝑔 : 𝐵 → 𝐶 ∨𝐸 and ℎ : 𝐶 → 𝐷 ∨𝐸. These functions
take an argument (of type 𝐴, 𝐵 or𝐶) and either return a result (of type 𝐵,𝐶 or 𝐷) or return an error
𝐸. The problem is how to compose these functions in such a way that ℎ ◦ 𝑔 ◦ 𝑓 is a function of type
𝐴 → 𝐷 ∨ 𝐸.
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Solving this problem crucially depends on how the type ∨ is represented. In our language, we
have two choices: Positive (łdata typež, evaluated when constructed) disjunction ⊕ or negative
(łcodata typež, evaluated when destructed) disjunction `. We will now discuss both alternatives in
turn.6

Error Handling Using a Positive Type. When we choose to model ∨ as a positive type ⊕, we have
constructors In1 and In2, and can destruct a term of type 𝐴 ⊕ 𝐵 by pattern matching on it. The
composition of the three functions 𝑓 , 𝑔 and ℎ can thus be written as follows:

ℎ ◦ 𝑔 ◦ 𝑓 : 𝐴→ 𝐷 ⊕ 𝐸

ℎ ◦ 𝑔 ◦ 𝑓 = 𝜆(𝑥 · 𝛼).Case (𝑓 𝑥) {

In1 𝑦 ↦→ Case (𝑔𝑦) {

In1 𝑧 ↦→ ⟨ℎ 𝑧 | | 𝛼⟩

In2 𝑒 ↦→ ⟨In2 𝑒 | | 𝛼⟩}

In2 𝑒 ↦→ ⟨In2 𝑒 | | 𝛼⟩}

This style of error handling is familiar in conventional functional programming languages with
algebraic types. The verbosity of this implementation can, of course, be greatly reduced by syntactic
sugar or monadic do-notation. But what we really want to point out is how un-noteworthy the
implementation is. This illustrates our point that we do not lose the naturality of natural deduction
when writing programs using these calculi.

Error Handling Using a Negative Type. Implementing the same example using the negative type `
is less familiar:

ℎ ◦ 𝑔 ◦ 𝑓 : 𝐴→ 𝐷 ` 𝐸

ℎ ◦ 𝑔 ◦ 𝑓 = 𝜆(𝑥 · 𝛼) .

⟨Match {[res, err] ↦→

⟨ Handle2

ℎ (Handle2

𝑔 (Handle2 𝑓 𝑥 with err)

with err)

with err) | | res ⟩ }

| | 𝛼⟩

After introducing the variables 𝑥 and 𝛼 by a lambda abstraction, we encounter the` introduction
form Match {[res, err] ↦→ ⟨ . . . | | res ⟩}, bringing two continuations into scope: the continuation
res which we can use to return a result of type 𝐷 and the continuation err which we can use to
return an error of type 𝐸. Since we want to write our program following the happy path, we return
directly to the result continuation, so we have to fill the hole with a term of type 𝐷 . If 𝑡 is a term of
type𝐴`𝐸, then the elimination form Handle2 𝑡 with 𝑒 returns the first option𝐴 along the implicit
happy path, and the possibility of an error case of type 𝐸 is handled by the continuation 𝑒 explicitly
in the handler.

Comparison. Programming with both polarities feels natural, leaving the choice of which construct
to use up to the programmer. In conventional (functional) programming languages, exceptions are
usually modelled using the positive type ⊕. Since these languages are based on natural deduction,
there is no natural way to model exceptions using the negative type `, apart from rewriting the

6This example is inspired by Spiwack [2014], who discusses this example in the context of the 𝜆𝜇�̃�-calculus, where the

sequent calculus syntax leads to terms that are less natural from a programmer’s point of view.
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program into continuation-passing or callback style. On the other hand, (checked) exceptions
correspond more closely to the way we modelled exceptions with `. The difference is that instead
of representing the additional exception path in the types, languages using checked exceptions
usually model this continuation using the throws keyword, and usually scope the exception handler
dynamically instead of lexically.

7.2 Parsimonious Filter

Let us now return to the parsimonious filter example from Figure 1 in Section 1. How does that
definition, based on equality between commands with nested (co)patterns, relate to the formal
calculus that we have seen so far? To begin, consider just the left-hand sides of each definition in
Figure 1 written by matching on the structures in a command (since the right-hand sides of each
equality will be the same in each step, we will omit them for now):

⟨𝑥 | | 𝛼 ◦ Not 𝑓 ⟩ = . . .

⟨filter 𝑝 𝑥𝑠 | | start ⟩ = . . .

⟨filter/pass 𝑝 [] | | [diff , same]⟩ = . . .

⟨filter/pass 𝑝 (𝑥 :: 𝑥𝑠) | | [diff , same]⟩ = . . .

The first step to desugaring this syntax is to replace each (left or right) elimination rule with the
corresponding (left or right) introduction rule, according to the notion of bi-expressibility given
here. For example, given a definition clause filter 𝑝 𝑥𝑠 = . . . familiar to functional programmers,
we replace the application forms (corresponding to right function elimination) with call stacks
(corresponding to left function introduction) around the starting continuation 𝑝 · 𝑥𝑠 · start. Dually,
the composition operator ◦ combining a (negated) function with a continuation defines a consumer
instead of a producer. The infix application form 𝛼 ◦ (Not 𝑓 ) can be rewritten in prefix notation
as (◦) 𝛼 (Not 𝑓 ) (corresponding to left subtraction elimination). This is replaced with a stack
(corresponding to right subtraction introduction) around the starting value: 𝛼 ·Not 𝑓 · 𝑥 . Replacing
each (left and right) eliminations by its equivalent introduction leads to these definition clauses:

⟨𝛼 · Not 𝑓 · 𝑥 | | (◦) ⟩ = . . .

⟨filter | | 𝑝 · 𝑥𝑠 · start ⟩ = . . .

⟨filter/pass | | 𝑝 · [] · [diff , same]⟩ = . . .

⟨filter/pass | | 𝑝 · (𝑥 :: 𝑥𝑠) · [diff , same]⟩ = . . .

The next step is to combine the (multi-)clause definitions on commands into the definition of a
single consumer or producer which matches on its input or output, respectively. This step can be
performed uniformly with a Match introduction written with nested (co)patterns like so:

(◦) = Match { 𝛼 · Not 𝑓 · 𝑥 ↦→ . . . }

filter = Match { 𝑝 · 𝑥𝑠 · start ↦→ . . . }

filter/pass = Match { 𝑝 · [] · [diff , same] ↦→ . . .

𝑝 · (𝑥 :: 𝑥𝑠) · [diff , same] ↦→ . . . }

The final step to desugaring is to flatten out the Match with nested (co)patterns into their
single-step counterparts for each individual type. Fundamentally, flattening combined patterns and
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◦ : 𝑍 −≺≺ (¬(𝑌 → 𝑍 ) −≺≺ 𝑌 )

◦ = 𝜆(𝛼 : 𝑍 · 𝑦 : ¬(𝑌 → 𝑍 ) −≺≺ 𝑌 ).

Case 𝑦 { 𝛽 : ¬(𝑌 → 𝑍 ) · 𝑥 : 𝑌 ↦→

Case 𝛽 { Not (𝑓 : 𝑌 → 𝑍 ) ↦→ ⟨𝑓 𝑥 | | 𝛼⟩ } }

filter : (𝑋 → Bool) → List 𝑋 → List 𝑋

filter = 𝜆(𝑝 : 𝑋 → Bool · 𝛼 : List 𝑋 → List 𝑋 ).

Case 𝛼 { 𝑥𝑠 : List 𝑋 · start : List 𝑋 ↦→

⟨Handle2 (filter/pass 𝑝) 𝑥𝑠 with (start ◦ (Not (const xs)))

| | start⟩ }

filter/pass : (𝑋 → Bool) → List 𝑋 → (List 𝑋 ` ⊤)

filter/pass =

𝜆(𝑝 : 𝑋 → Bool · 𝛼 : List 𝑋 → List 𝑋 ` ⊤) .

Case 𝛼 { 𝑦𝑠 : List 𝑋 · 𝛽 : List 𝑋 ` ⊤ ↦→

Case 𝑦𝑠 {

[] ↦→ Case 𝛽 { [diff : List𝑋, same : ⊤] ↦→ ⟨Match {} | | same⟩}

(𝑥 : 𝑋 :: 𝑥𝑠 : List 𝑋 ) ↦→

Case 𝛽 { [diff : List𝑋, same : ⊤] ↦→

Case (𝑝 𝑥) {

True ↦→ ⟨filter/pass 𝑝 𝑥𝑠 | | [diff ◦ (Not (𝑥 ::)), same]⟩

False ↦→ ⟨filter/pass 𝑝 𝑥𝑠 | | [diff , diff ◦ (Not (const 𝑥𝑠))]⟩ } } } }

Fig. 9. Parsimonious filter function reloaded

copatterns is not that different from the procedure of flattening ordinary nested patterns, involving
tuples and sum types and other algebraic data types, typically done in conventional functional
programming languages. The flattening of our parsimonious filter function looks like this:

(◦) = 𝜆(𝛼 · 𝑦). Case 𝑦 { 𝛽 · 𝑥 ↦→ Case 𝛽 { Not 𝑓 ↦→ . . . } }

filter = 𝜆(𝑝 · 𝛼). Case 𝛼 { 𝑥𝑠 · start ↦→ . . . }

filter/pass = 𝜆(𝑝 · 𝛼). Case 𝛼 { 𝑦𝑠 · 𝛽 ↦→ Case 𝑦𝑠 { [] ↦→ Case 𝛽 { [diff , same] ↦→ . . . }

𝑥 :: 𝑥𝑠 ↦→ Case 𝛽 { [diff , same] ↦→ . . . } } } }

The final, completely desugared and type-annotated version of Figure 1 into the core calculus
syntax (with some trivial extensions, such as Booleans or recursion) is shown in Figure 9.
The desugared filter/pass function takes a predicate 𝑝 on 𝑋 as well as a list 𝑦𝑠 . Using `, it

returns a List𝑋 if at least one of the elements of the input do not fulfil 𝑝 and a unit value otherwise.
This function uses direct style to analyze the list and split into one of three cases:

• The list is empty. In this case, we send the unit Match {} to the continuation same, which
signals that the list contains no filtered elements.
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• The list is non-empty and its head satisfies 𝑝 . In this case, we call filter recursively on the tail.
If that call signals that nothing is filtered in the tail, then nothing is filtered in the whole list
(same). If something is filtered in the tail, we start constructing the new tail with the curried
constructor (𝑥 ::) and send the whole tail (constructed from this call to (𝑥 ::) and the result
of the recursive call) to diff .

• The list is non-empty and its head does not satisfy 𝑝 . In this case we keep the default
continuation as-is and reset the shared tail to the current tail, since we cannot use the
previous one which would have contained 𝑥 . We never invoke same and implicitly discard it
before the recursive call.

We can then use this function with the filter wrapper, which captures the current continuation
start with a 𝜆 and uses Handle2 to discharge the łsamež case with a continuation that passes the
list to start.
The infix ◦ utility function is interesting in that it uses both the → and the ¬ connective. It

demonstrates the utility of having 𝜆 and application forms on the consumer side, and of using
negation to pass producers into a consumer context.
This example demonstrates the benefits of having all rules available. Compared to sequent

calculus, all program parts can be written in direct style, using appropriate elimination forms. The
usage and choice of polarized connectives leads to a more structured and readable program than
low-level usages of call/cc and similar control operators.

In what sense is this implementation of filter łefficientž? Consider the expression ⟨filter(>

100) [0 . . . 106] | |start⟩. It will reduce to

⟨filter/pass(> 100) [] | | [start ◦𝑁𝑜𝑡 (101 ::) ◦ . . . ◦Not (106 ::), start ◦Not (const[101 . . . 106])⟩

which can immediately return to the second continuation with ⟨() | | start◦Not (𝑐𝑜𝑛𝑠𝑡 [101 . . . 106])⟩

and thus avoid unwinding the stack built up in the left-hand diff continuation. In this sense, the
filter/pass function is łpartiallyž tail-recursive: the recursive stack frame for the pass case can
be optimized away in this program, but not the return pointer for when an element is removed.
In a real implementation of our calculus, this would allow the compiler to use sharing on the
[101 . . . 106] tail of the input list.
To summarize, in a real implementation of the language, the code in Figure 9 would combine

these three properties:

(1) Tail-call optimization of recursive calls when the head is removed.
(2) Sharing the common list suffix rather than reallocating it.
(3) Immediately jumping to the starting caller when there is no more prefix to append to a

modified tail.

8 RELATED AND FUTURE WORK

Computational Sequent Calculus. Our work is obviously related to previous sequent calculus-

based languages, in particular the 𝜆𝜇�̃�-calculus of Curien and Herbelin [2000] and the dual calculus
of Wadler [2003]. Being directly inspired by the sequent calculus, each of these calculi define
distinct syntactic categories for producers and consumers Ð for syntactically representing the
sequent calculus’ left and right rules logical rules Ð and do not feature elimination forms. The

syntactic categories of 𝜆𝜇�̃� with only function types are similar but not fully isomorphic; this is why

Curien and Herbelin [2000] extend 𝜆𝜇�̃� with a subtraction type, corresponding to the −≺≺ connective
discussed here, which completes the duality with function types. In contrast, Wadler [2003]’s
dual calculus eschews functions altogether, instead focusing on only conjunction, disjunction, and
negation, presented in a non-polarized style (that is, the single conjunction type is produced by the
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pair (𝑥,𝑦) and consumed by the projections fst[𝛼] and snd[𝛽]). These connectives are given two
dual interpretations Ð one following a call-by-value semantics and one following call-by-name Ð
which turns out to reveal the hidden polarities of the connectives: under call-by-value conjunction
and disjunction correspond equationally to the positive ⊗ and ⊕ and under call-by-name they
correspond to the negative & and ` discussed here, but not vice versa [Downen and Ariola 2014].
Our calculus also resembles the presentation of the calculus of classical natural deduction in Lovas
and Crary [2006], based on work by Nanevski. That calculus contains products and sums, but does
not differentiate between different polarizations. Instead, it uses the left introduction rules of the
corresponding positive and right introduction rules of the corresponding negative connectives.
They also don’t have elimination rules in the core system but instead encode the right elimination
rules in a manner similar to our diagonal encodings.

𝜆𝜇 Calculus. The 𝜆𝜇 calculus [Parigot 1992b] is a natural deduction style language that corre-
sponds to classical logic. We conjecture that it can be very straightforwardly embedded into our
calculus with the following compositional transformation:

J𝑥K = 𝑥

J𝜆𝑥 .𝑒K = 𝜆(𝑥 · 𝛼).⟨J𝑒K | | 𝛼⟩ 𝛼 fresh

J𝑒1 𝑒2K = J𝑒1K J𝑒2K
J𝜇𝛽.( [𝛼] 𝑒)K = 𝜇𝛽.⟨J𝑒K | | 𝛼⟩

Wadler [2005] describes a translation from 𝜆𝜇 to his aforementioned dual calculus (and back);
due to the absence of elimination forms, the translation is considerably more complicated.

Translating Natural Deduction to Sequent Calculus. Gentzen [1935] describes a translation of
derivations in the intuitionistic deduction system NJ into the intuitionistic sequent calculus LJ. In
this translation, elimination rules are transformed into usages of the corresponding left rule for the
connective and then an invocation of the cut rule, which means that normal forms are in general
not translated to normal forms. Prawitz [1965, p.92] discusses a translation from natural deduction
to sequent calculus that preserves normal forms, but at the expense of compositionality: The
translation extends the sequent calculus derivation at its bottom when translating an introduction
rule but from the top when an elimination rule is translated. Curien and Herbelin [2000] present two
term-level translations N and > that correspond to Prawitz’ and Gentzen’s proposals, respectively.
These translations are similar to the elimination rule encodings of bi-expressibility, and in terms of
continuation-passing style > is analogous to Hofmann and Streicher [1997]’s call-by-name CPS
transformation whereas N corresponds to Plotkin [1975]’s colon transformation.

Subtractive Logic. A dual to implication called subtraction, pseudo-difference, or co-implication
is well-known in the domain of (bi-intuitionstic) logic [Rauszer 1974; Tranchini 2012], but finding
an intuitive operational interpretation turned out to be difficult. Crolard [2004] proposed a rather
complicated operational interpretation as łcoroutinesž. We suggest that the reason for the com-
plication is that Crolard considered an asymmetrical language with no consumer language. We
think that our completely symmetric rules for→ and −≺≺, with all rules, together with their simple
operational semantics, is an improvement over these works.

Linear Logic, Polarity, Data and Codata Types. An important step in the development of the proof
theory of sequent calculus was the discovery of linear logic by Girard [1987]. Linear logic restricts
the applicability of structural rules, like weakening and contraction, which makes it possible to
use a resource reading of typing judgements [Wadler 1990]: variables bound in the context are
resources which are consumed in the construction of terms, which explains why they cannot be
freely duplicated or discarded. A consequence of this resource interpretation is that the ordinary
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connectives of classical or intuitionistic logic have to be split into multiple connectives; e.g. ∧ has to
be split into ⊗ and &, ∨ has to be split into ⊕ and`. Studying proof search for linear logic, Andreoli
[1992] realized that these connectives fall into two classes, which he called synchronous and
asynchronous; later this terminology changed to positive and negative polarity. In programming
language terms, polarity corresponds to the distinction between data types which are defined via
their constructors, and codata types [Downen et al. 2019; Hagino 1989] which are defined via their
observations/destructors. For example, while both ⊕ and ` are disjunctions, ⊕ corresponds to a
data type defined with the help of two injections constructors, while ` corresponds to a codata
type defined with one destructor bringing two continuations into scope. As argued by Zeilberger
[2009] and many others, this distinction is important even in a system which does not enforce
the linear use of variables because it determines evaluation order. We have illustrated this with
examples where the availability of polarized connectives was critical.

When considering user-defined data and codata types, as we plan to do in future work, one has
to specify generic mechanisms to construct and destruct terms of those types. Copattern matching
[Abel et al. 2013] was introduced as a generic mechanism for constructing inhabitants of codata
types, dually to how pattern matching is used to destruct inhabitants of data types. For example,
Zeilberger [2008] provided a calculus where pattern matching and copattern matching, constructors
and destructors are the only term-level constructs. In the context of the sequent calculus, Downen
and Ariola [2021] provide a variant of the 𝜇/�̃� calculus with user provided data and codata types,
but consider only the left and right introduction forms of the sequent calculus, and no elimination
forms. The calculus presented in this paper could be similarly presented with user-defined data
and codata type declarations, with introduction and elimination forms, left and right, derived from
these declarations. In fact, a lot of the sets of rules presented in this paper were considered by us in
this more general form first, but we defer a full development of that idea to future work.

One-Sided versus Two-Sided. The calculus we present here is a two sided sequent calculus, in the
sense that we use both sides of the sequent separated by ⊢: producers live on the right-hand side
and consumers live on the left. This distinction can quickly be summarized by the cut rule used in
our core calculus:

Γ ⊢ 𝑒 : 𝑇 | Δ Γ | 𝑓 : 𝑇 ⊢ Δ

⟨𝑒 | | 𝑓 ⟩ : (Γ ⊢ Δ)

Importantly, this rule promises any producer 𝑒 of a type 𝑇 can interact with any consumer 𝑓 of the
same type 𝑇 . But this isn’t the only way to arrange interaction in a sequent calculus. A popular
variant in the setting of classical linear logic [Girard 1987] is a one sided sequent calculus, which
only ever uses a single side of the sequent throughout. This łrestrictionž can be made without loss
of expressivity because of involutive negation in classical (linear) logic, for every proposition 𝐴

there is a dual proposition 𝐴⊥ such that 𝐴⊥⊥ = 𝐴, such that having 𝐴 on the left of ⊢ is the same as
having 𝐴⊥ on the right. This involutive negation corresponds to the duality of types, here written
as 𝑇 ◦, which can be used to formulate a one-sided language. Focusing again on the iconic cut rule,
we have two more possibilities for arranging a one-sided version of the calculus as

⊢ 𝑒 : 𝑇 | Δ ⊢ 𝑓 : 𝑇 ◦ | Δ′

⟨𝑒 | | 𝑓 ⟩ : (⊢ Δ,Δ′)

Γ ⊢ 𝑒 : 𝑇 Γ
′ ⊢ 𝑓 : 𝑇 ◦

⟨𝑒 | | 𝑓 ⟩ : (Γ, Γ′ ⊢)

by putting all types on the right of ⊢ [Munch-Maccagnoni 2009] (as is popular in linear logic) or
all variables to the left of ⊢ and the expression to the right [Spiwack 2014] (more popular in the
programming languages community). The important thing to notice about these one-sided cut rules
is the promise that any producer of a type 𝑇 can interact with any other producer of the opposite
type 𝑇 ◦.
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The idea of connecting producers to other producers fits with our idea of consumer/producer
polymorphism in Section 5. Essentially, the point is that if the duality is complete enough, and
if consumers of 𝑇 are completely interchangeable with producers of 𝑇 ◦, then two producers (or
two consumers) of opposite types should be able to interact directly with one another. In such
a setting there is no difference between 𝑇 consumers and 𝑇 ◦ producers, so Munch-Maccagnoni
[2009] eliminates the distinction between the commands ⟨𝑒 | | 𝑓 ⟩ and ⟨𝑓 | | 𝑒⟩. We conjecture that a
complete story of consumer/producer polymorphism should elaborate on this one-sided view of
sequents.

Left calculus. Right calculi are abounds in the literature behind both the fields of logic and
programming languages. Intro calculi frequently appear in the study of proof theory, and are
growing in number to help understand and implement programming languages, too. However,
examples of left calculi can scarcely be found in the literature.

The idea of left elimination rules has been presented before by Carraro et al. [2012], which give a

calculus similar to 𝜆𝜇�̃� with a left rule for introducing function call stacks, but instead of ordinary
𝜆-abstractions, it contains projections that access the argument and the return-pointer in a call
stack. These projections are similar to the left elimination rule for functions presented here, by the
analogy that a Case extracting the two components of a pair of two things is similar to projections
from that pair to each component individually.

Independently, Nakazawa and Nagai [2014] introduces the same combination of left introduction
and eliminations for functions in the context of the Λ𝜇-calculus [Groote 1994], a variant of Parigot’s
𝜆𝜇-calculus which collapses the distinction between commands and producers. This collapse
improves the completeness properties of the rewriting theory [Saurin 2005] and elevates 𝜇 to a
much more expressive delimited control operator [Herbelin and Ghilezan 2008], and the use of left
elimination rules were key to reconciling extensionality (expressed by the 𝜆-calculus’ 𝜂 law) of
delimited control in Λ𝜇 with standard properties like confluence.

Elimination calculus. We know of two calculi which correspond to what we call an elimination
calculus. Negri’s uniform calculus for classical linear logic (cf. Negri [2002] and Negri and Von Plato
[2001, p. 213ff.]) is a termfree logical calculus with only elimination rules. Negri uses the term
łgeneral introduction rulež for what we call left elimination rules. Natural deduction and sequent
calculus can be obtained by instantiating major and minor premises of these elimination rules with
an instance of the axiom rule. This is similar to our bi-expressibility rules, but since she doesn’t
have to consider term assignment, she also doesn’t have to deal with the activation and deactivation
of formulas.
Parigot’s free deduction [Parigot 1992a], a precursor to his 𝜆𝜇-calculus [Parigot 1992b], also

contains only elimination rules, and he also obtains natural deduction and sequent calculus by
instantiating major and minor premises by the axiom rule. In distinction to Negri, he also provides
a term system with constructs which can be seen as precursors to both the 𝜇 and �̃�-abstractions of
Curien and Herbelin [2000].

Communication calculi and session types. There is a well-known relationship between linear logic
and session types, both in its intuitionistic [Caires and Pfenning 2010] and its classical [Wadler
2014] version. These session type systems are based on some form of communication calculus,
like the 𝜋-calculus, and provide a type system for the communication channels. There are two
relationships between session type systems and our work. First, there is a relationship between the
duality operation 𝑇 ◦ on types and a similar operation on session types: The dual of a session type
for sending some data is a session type for receiving some data of that type, the dual of a session
type for choosing between various options is a session type for offering those choices, and so on.
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The second relationship concerns the non-local character of reduction in a communication calculus:
The term which wants to send some information on a channel might be at some distance from the
term for receiving information on that channel, but they nevertheless interact in a reduction step.
This can also be observed in the elimination calculus, if we would formalize the reduction rules for
that system directly. For example Parigot [1992a], who considers reduction rules for a system based
on elimination rules, uses the following version of the axiom rule (which is derivable in our system)

Axiom
⟨𝑥 | | 𝑥⊥⟩ : (𝑥 : 𝐴 ⊢ 𝑥⊥ : 𝐴)

A cut in his system then consists between an elimination rule which uses 𝑥 as the major premise,
and an elimination rule which uses 𝑥⊥ as the major premise, but they don’t have to stand directly
next to each other. The resulting reduction system is closely reminiscent of a communication step
happening between two ends of a channel. We plan to investigate both these aspects in more detail
in future work.

Relations between rules. Our bi-expressibility principle concerns the łdiagonalž relation between
right-intro/left-elim and left-intro/right-elim. There are other sanity principles for rule pairs, but
they concern the relation between introduction and elimination rules and are of particular interest
in proof-theoretic semantics, such as invertibility and harmony [Schroeder-Heister 2018].

Transformations between consumers and producers. Our approach to consumer-producer poly-
morphism is related to but very different from whole-program transformations (generalizations of
defunctionalization and refunctionalization) that transform data types into codata types or vice
versa [Binder et al. 2019; Rendel et al. 2015]. Consumer-producer polymorphism allows us to use
the same program in two ways, once as a consumer and once as a producer. When viewed as a
macro code generator, it is a compositional transformation. The aforementioned generalizations
of de- and refunctionalization, on the other hand, transform a whole program in a way that can
be viewed as a matrix transposition [Ostermann and Jabs 2018], while preserving its operational
behavior. For instance, when defunctionalizing a codata type into a data type, all copattern-matches
on a destructor in the whole program are turned into a single pattern match. These transformations
could also be applied to programs in the language presented here, but they are not in the scope of
this paper.

9 CONCLUSIONS

Programming abstractions based on sequent calculus have, despite their attractive symmetry and
expressive power, seen only limited influence on functional language design. We have opened up
the design space of natural deduction and sequent calculus by considering all four kinds of rules
and the four natural subcalculi. We have analyzed the interdependency between program structure
and rule choice and have argued that offering all rules to the programmer maximizes expressiveness
and allows a natural and modular program structure. We have proposed a constructive sanity check
for the rules, bi-expressibility, and have shown how the dualities between the available connectives
can be deepened in the form of a uniform syntax and consumer/producer polymorphism.
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A EXAMPLE PROGRAMS IN FORMAL CALCULUS SYNTAX

The examples in Section 2 were written in a simplified version of the formal syntax. The fully
formal version of Table 1 can be found in Table 3, the fully formal version of Table 2 in Table 4.

Table 3. Four different ways to swap the components of 𝑧 : 𝑋 ⊕ 𝑌 and send to consumer 𝛼 : 𝑌 ⊕ 𝑋 .

Calculus Program

Right Case 𝑧 {In1 𝑥 ↦→ ⟨In2 𝑥 | | 𝛼⟩; In2 𝑦 ↦→ ⟨In1 𝑦 | | 𝛼⟩}

Intro ⟨𝑧 | | Match {In1 𝑥 ↦→ ⟨In2 𝑥 | | 𝛼⟩; In2 𝑦 ↦→ ⟨In1 𝑦 | | 𝛼⟩}⟩

Left ⟨𝑧 | | Match {In1 𝑥 ↦→ ⟨𝑥 | | Out2 𝛼⟩; In2 𝑦 ↦→ ⟨𝑦 | | Out1 𝛼⟩}⟩

Elim Case 𝑧 {In1 𝑥 ↦→ ⟨𝑥 | | Out2 𝛼⟩; In2 𝑦 ↦→ ⟨𝑦 | | Out1 𝛼⟩}

Table 4. Computation from 𝑥 : (⊤ & 𝑋 ) & ⊤ to 𝛼 : ⊥ ⊕ ((𝑋 ⊕ ⊥) ⊕ ⊥).

Calculus Program Program Structure

Right ⟨In2 (In1 (In1 (Out2 (Out1 𝑥))) | | 𝛼⟩ 𝛼 outside-in, 𝑥 inside-out
Intro ⟨𝑥 | | In1 (In2 �̃�𝑥 .⟨In2 (In1 (In1 𝑥)) | | 𝛼⟩)⟩ 𝑥 outside-in, 𝛼 outside-in
Left ⟨𝑥 | | In1 (In2 (Out1 (Out1 (Out2 𝛼))))⟩ 𝑥 outside-in, 𝛼 inside-out
Elim ⟨Out2 (Out1 𝑥) | | Out1 (Out1 (Out2 𝛼))⟩ 𝛼 inside-out, 𝑥 inside-out
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