
All About That Stack
A Unified Treatment of Regions and Control Effects

PHILIPP SCHUSTER, University of Tübingen, Germany

JONATHAN IMMANUEL BRACHTHÄUSER, EPFL, Switzerland

KLAUS OSTERMANN, University of Tübingen, Germany

Ever since the inception of Algol have programming language researchers sought good abstractions to inspect

and manipulate stacks while maintaining basic invariants of program behavior. These abstractions range from

procedure calls and block structure to region-based resource management and control effects. While all these

abstractions are useful and well-designed individually, their combination and interaction is an open issue.

We present a conceptual framework with a novel form of stack abstraction, in which stacks are decomposed

into regions, moves between stacks are expressed as control effects, and relationships between regions are

represented with subregioning evidence. We demonstrate and prove that these abstractions are powerful

enough to express and combine region-based resource management and control effect while guaranteeing

region and effect safety invariants. We also discuss an implementation by means of a compilation to System F

and validate its utility by means of several standard examples.

1 INTRODUCTION
Regions are a useful concept in programming languages for the safe and automatic management of

resources [Tofte and Talpin 1997]. Resources are organized into a stack of regions and automatically

released when control flow leaves the part of the program where a region is live. Control effects,

like for example exceptions or more general control operators (such as shift / reset [Danvy and

Filinski 1990] or algebraic effect handlers [Plotkin and Pretnar 2013]), present a challenge for

region-based resource management, because they allow for non-local transfer of control. While

some work [Grossman et al. 2002; Kiselyov and Ishii 2015; Kiselyov and Shan 2008; Tofte et al. 2001]

mentions compatibility with exceptions, a formal argument for the correct interaction between

region-based resource management and control effects is rarely given.

Runtime Stack Regions

Control
Effects Subregioning

Evidence

𝜌2 ⊑ 𝜌1𝜌2

𝜌1

Fig. 1. Illustration of the core concepts regions of the
stack (i.e., 𝜌1 and 𝜌2), control flow transfer via control
effects, and evidence (i.e., 𝜌2 ⊑ 𝜌1) between regions.

In this paper we present a conceptual frame-

work that uniformly accommodates existing

use-cases of regions as well as different con-

trol effects. Our framework does not resolve

all problematic interactions between resource

management and control effects, but it serves as

a tool to uniformly reason about both domains.

Our unified treatment is “all about that stack” .
We understand regions, control effects, and sub-

regioning evidence by their connection to the

runtime stack, as illustrated in Figure 1, which

we discuss in detail in the following section.

One example for the interaction between re-

sources and control effects are finalizers. What

should happen when finalization itself throws

an exception during unwinding? The behavior

varies among programming languages. Our framework helps us to not only discuss which semantics

is appropriate in this case, but also to argue why this behavior is safe.

Technical Report, 2021, University of Tübingen
2021.

1

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

1.1 Overview
The rest of the paper is organized as follows. In Section 2, we introduce the main ideas behind our

conceptual framework by studying two different language features and their interaction: arena

based memory-management and exceptions. In Section 3, we present a base language Λ𝜌 with

type-level region tracking and term-level subregioning evidence. The formulation of this base

calculus is parametrized over the semantic interpretation of both regions and subregioning evidence.
We extend this base language with arena-based memory management and exceptions. We then

present an operational semantics that formally establishes the connection between type-level

regions and the concrete runtime stack during execution. In Section 4, we define a denotational

semantics for the same language as a translation to System F in continuation-passing style. To

evaluate the applicability of our conceptual framework, in subsequent sections we extend the base

calculus Λ𝜌 with more interesting control constructs, like operators for delimited control and effect

handlers, as well as more interesting constructs for dealing with resources, like backtrackable

mutable state and dynamic wind. Our unified treatment of effects and regions puts us in a unique

position to discuss these features and their interaction in the same language.

1.2 Contributions
In particular, this paper makes the following contributions:

• A conceptual framework of regions and subregioning evidence, allowing us to perform an

in-depth study of the interaction of region-based resource management and control effects

in a type- and effect-safe language Λ𝜌 . Soundness proofs of Λ𝜌 are mechanized in Coq.

• An operational semantics and theorems of correspondence that connect type-level regions and

term-level subregioning evidence with run-time properties during evaluation (Corollaries 3.3

and 3.4). Together these theorems entail that we do not need special language runtime support

for many region-related language features.

• A denotational semantics of Λ𝜌 in terms of an iterated CPS translation where regions are

answer types and evidence terms are answer-type coercions. We present several case studies

that instantiate our conceptual framework and discuss non-trivial interactions between

different region-related language features. We specify the semantics of those features without

adding special runtime support or changing the denotation of regions or evidence.

• The translations to CPS have been implemented as a shallow embedding into the dependently-

typed language Idris, which shows that they take well-typed terms to well-typed terms in

System F. All examples given in the paper type check and evaluate to the expected result.

2 MAIN IDEAS
As already mentioned, our unified treatment is “all about that stack” and that we understand regions,
control effects, and subregioning evidence by their connection to the runtime stack, as illustrated in

Figure 1. Let us consider each of the three concepts in turn.

Regions. At the heart of this unified treatment lies our understanding of what a region is. We

shift the perspective and instead of considering a stack of regions [Tofte and Talpin 1994], we

consider regions of the stack. That is, where most literature on region-based memory management

sees a region as a part of the store (i.e., a “region of memory”), we understand a region as part of

the runtime stack. While other approaches track where values are stored, we rather track where

computations are run. Importantly, in this paper with stack we refer to the runtime stack and not
to a way of organizing memory.

2

All About That Stack Technical Report, 2021, University of Tübingen

Control Effects. While regions denote particular parts of the runtime stack, control effects (like

exceptions) move between stack segments. As we will see in this section, unifying the treatment of

regions and control effects, we rephrase the problem of effect safety as a problem of region safety,

and use the same type-level machinery to guarantee both. This understanding of effect safety is

very much in line with recent work on effect handlers [Biernacki et al. 2019a; Brachthäuser et al.

2020a; Xie et al. 2020; Zhang and Myers 2019].

Subregioning Evidence. Since they denote parts of the runtime stack, regions are naturally nested.

To witness this nesting, we introduce explicit term-level evidence [Fluet and Morrisett 2004]. There

are two important aspects to our notion of subregioning evidence, corresponding to their static
and dynamic interpretation. Statically, evidence of type 𝜌2 ⊑ 𝜌1 witnesses the fact that region 𝜌2
is nested within region 𝜌1, allowing us to guarantee region and effect safety. Importantly, evidence

also has a runtime interpretation: dynamically, evidence of the type 𝜌2 ⊑ 𝜌1 denotes the difference
between the two regions 𝜌2 and 𝜌1. We assign meaning to this difference and equip evidence with

computational content describing what it means for program execution to move from one region

of the stack to another region of the stack. In their work on monadic regions, Fluet and Morrisett

[2004] incorporate a very similar form of subregioning, envisioning that

[. . .] we can imagine a scheme in which this primitive evidence is abstract and we provide
additional operations for combining evidence [. . .] – Fluet and Morrisett [2004, p. 106]

In this paper, we do exactly that. In the remainder, we will encounter different semantic inter-

pretations of this “difference”. The following subsections use arena allocation and exceptions as

examples to make these ideas more concrete.

2.1 Arena-based Memory Management
As a first example, let us see how region-based resource management can be expressed within

our framework. We use memory management as an example. Resources other than memory, for

example file handles [Kiselyov and Shan 2008], would be treated similarly. Our type system follows

Fluet and Morrisett [2004]. What is new is our understanding what a region is.
An arena is a block of memory that allows for the allocation of many small objects into it. While

we use the term arena, other terminology such as pool and region is also in use. In alignment with

our understanding of regions, arenas are tied to the runtime stack: they have to be allocated and

deallocated in a last-in-first-out way.

To make arena-based memory management safe, we have to ensure that we only allocate into an

arena while it is still live and that we only read from a pointer into an arena which is still live. An

arena is live, when it is in the region which describes the current runtime stack. To understand this

intuitively, consider the following example.

Example 2.1. In this example, we create a fresh arena. Operationally, the arena { ... }
statement will allocate a fresh arena, and deallocate it after control flow leaves the enclosed block.

It introduces a region variable r1, an arena a1 and subregioning evidence l1. In our type system,

every statement is checked in a region. The enclosed block is checked in region r1.

arena { [r1](a1 : Arena r1 A, l1 : r1 ⊑ T) ⇒
val ptr = alloc(a1, aValue, 0);

arena { [r2](a2 : Arena r2 (A × A), l2 : r2 ⊑ r1) ⇒
val pair = alloc(a2, (load(ptr, l2), load(ptr, l2)), 0);

return pair // does not type check

}

}

3

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

We then allocate a value aValue into the arena a1. To allocate into the arena a1, we have to provide
evidence that the arena’s region is nested inside of the current region, i.e. that r1 ⊑ r1. We provide

the reflexivity evidence 0. The resulting pointer ptr has type Ptr r1 A.
We then create a second arena a2 in a second region r2 which is clearly inside of r1. This fact is

witnessed by the evidence variable l2. We allocate a pair into a2. To load from the pointer ptr, we
have to provide evidence that the pointer’s region is inside of the current region, i.e. that r2 ⊑ r1.
We provide the evidence variable l2. The allocated pair pair has type Ptr r2 (A × A). This
pointer shall not be used outside of region r2. Our type system prevents pair from being returned

from the block. At the same, it would be fine to return ptr from the inner region r2, but not from
the outer region r1.

Meaning of Regions and Evidence. In the case of arenas, a region is a concrete list of live arenas.
The top-level region is the empty list. When we run this example, we allocate a fresh arena a1.
Region r1 stands for the singleton list containing just a1. Then we allocate a second arena, a2.
Region r2 stands for the two-element list containing a2 and a1. Subregioning evidence also is a

list of arenas. It is the difference between the two lists of arenas that the regions stand for. In this

example l2 : r2 ⊑ r1 is the singleton list containing a2.

2.2 Exception Handling
Exceptions abort the current computation to an exception handler. An exception that is thrown

while the corresponding handler is not on the stack results in a error condition that we want to

prevent statically. Within our framework, we can phrase exception safety in terms of regions: in

order to throw to an exception handler, we require evidence that the corresponding handler is still

on the runtime stack. For example, consider the following program.

Example 2.2. The function safeDiv divides two numbers, but throws an exception when the

second number is zero.

def safeDiv[r](x : Int, y : Int, e : Handler r) at r {

if (y == 0) { throw(e, 0) }

else { return (x / y) }

}

We follow Zhang et al. [2016] and Brachthäuser et al. [2020a] and explicitly pass exception handlers.

That is, in addition to the two parameters x and y, the function safeDiv receives an exception

handler e. When y is zero we throw to this handler e. For this to be safe we need to guarantee that

this handler is on the stack. But this is the very same problem we had with arenas. So we use the

very same solution: When we throw to a handler of type Handler r we have to provide evidence

that the current region is a subregion of the handler’s region, in this example 0 : r ⊑ r. The
function safeDiv is region polymorphic. It abstracts over a region variable r. It is also annotated to

run in the region r. To handle the exception we use our safeDiv function as follows.

try { [r1](e1 : Handler r1, l1 : r1 ⊑ T) ⇒ safeDiv[r1](5, 0, e1) }

catch { return 0 }

Very much like the arena statement, the exception handler introduces a region variable r1, a
handler e1, and subregioning evidence l1. In the call to safeDiv, we instantiate the region variable

r to r1 and pass the exception handler e1. The example illustrates that we can guarantee exception

safety, or more generally effect safety, by the very same mechanism we use for region safety.

Meaning of Regions and Evidence. In the case of exceptions, a region is a list of exception handlers
on the runtime stack. Evidence now corresponds to the list of exception handlers that an exception

4

All About That Stack Technical Report, 2021, University of Tübingen

unwinds, again representing the difference between regions. An alternative representation that

suffices in this example is to interpret evidence as the total number of exception handlers that need

to be skipped over, reducing the meaning of evidence to the bare minimum.

2.3 Combining Arenas and Exceptions
Let us now look at an example where we combine arenas and exceptions.

Example 2.3. We install an exception handler and create two arenas. The inner statements are

checked in region r3.

try { [r1](e1 : Handler r1, l1 : r1 ⊑ T) ⇒
arena { [r2](a2 : Arena r2 String, l2 : r2 ⊑ r1) ⇒

arena { [r3](a3 : Arena r3 String, l3 : r3 ⊑ r2) ⇒
alloc(a3, "hello", 0);

alloc(a2, "world", l3);

throw(e1, l3 ⊕ l2)

}

}

} catch { return 1 }

To allocate into the arenas, we have to provide evidence, as before. To throw an exception to the

outer handler e1, we have to provide evidence that region r3 is inside of r1. We compose evidence
variables l3 ⊕ l2, to get evidence of type r3 ⊑ r1.

Meaning of Regions and Evidence. In this combination, regions and evidence are again lists, with

elements that are either an arena or an exception handler . The evidence contains exactly the arenas

a3 and a2 we need to deallocate when we throw to handler e1. In this example this is rather obvious.

But in general, and especially in the presence of features like first-class functions, parametric

polymorphism, or mutable state it is not clear that this is always the case.

2.4 Regions and Evidence
Different language features like arenas and exceptions require assigning different meaning to

regions and evidence. Our conceptual framework equips us with the vocabulary to talk about

evidence as the constructive difference between regions. In the remainder, we will further explore

this notion of difference in two ways.

Operationally. To make the above examples precise and provide an operational intuition, in the

next section we formally present the Λ𝜌 calculus together with an operational semantics. In this

semantics, regions and evidence are both represented as lists of markers. As we have seen in the

combined example, extending a language with multiple different features requires potentially global

changes to the meaning of regions and evidence.

Denotationally. To study additional language constructs and their composition, in Section 4

we present a CPS translation of Λ𝜌 . Interestingly, where the small-step operational semantics

represented evidence as lists, in our translation we represent regions as answer types and evidence

as answer-type coercing functions, which can be understood as difference lists [Hughes 1986]. This

way, each language feature can choose its own meaning of regions (by choosing a corresponding

answer type) and its ownmeaning of evidence (by implementing the answer type coercing function).

Function composition immediately gives rise to a sound composition of the different interpretations

of evidence.

5

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Terms:
Statements

s ::= val x = s; s sequencing

| return e returning

| e[𝜌] (e) application

Expressions

e, i ::= x | f | l variables

| v values

| 0 refl. evidence

| e ⊕ e trans. evidence

Values

v ::= () | 0 | 1 | ... | true | ... primitives

| { [r] (x : 𝜏) at 𝜌 ⇒ s} closures

Types:

Types

𝜏 ::= Int | Bool | ... primitives

| ∀[r] (𝜏) →𝜌 𝜏 functions

| 𝜌 ⊑ 𝜌 evidence

Regions

𝜌 ::= r region variable

| T toplevel region

Environments:
Γ ::= ∅ empty env.

| Γ, r region binding

| Γ, x : 𝜏 value binding

Fig. 2. Syntax of our base language Λ𝜌 .

3 A CALCULUS OF REGIONS – Λ𝜌

In this section, we present Λ𝜌 , a calculus with regions and subregioning evidence. We then formally

introduce the two extensions of the previous section: arenas and exceptions. Both of these will push

markers onto the runtime stack. We call the extended language Λ𝜌 [Mem, Exc]. We define a small-

step operational semantics for Λ𝜌 [Mem, Exc]. This semantics provides a concrete operational

intuition: a region is a list of concrete markers on the stack and evidence is a list of markers that
represents the difference between such lists. This allows us to establish a correspondence between

type-level regions and term-level evidence, which is captured in Corollaries 3.3 and 3.4.

The paper is accompanied by a mechanized formalization of the extended language and its

operational semantics in the Coq theorem prover [Bertot and Castéran 2004], including Theorems 3.1

and 3.2. Region- and exception safety follow as corollaries: whenever we use an arena or throw an

exception, the corresponding marker or handler will be on the stack.

3.1 Syntax
Figure 2 defines the syntax of Λ𝜌 . We use fine-grain call-by-value [Levy et al. 2003] and syntactically

distinguish between statements, which can have effects, and pure expressions.

Function values (i.e., { [r] (x : 𝜏) at 𝜌 ⇒ s}) abstract over a list of type-level region parameters

(i.e., r), and a list of term-level value parameters (i.e., x : 𝜏). Each function is defined to run exactly in

a region 𝜌 , but otherwise functions are unsurprising. Since our focus is on the interaction between

regions and control effects, we omit type abstraction from this presentation. Our mechanized

formalization includes type polymorphism, which is orthogonal to the rest of the calculus.

We define the following short-hand notation for named function definitions:

def f [r] (x : 𝜏) at 𝜌 { s0 }; s � val f = return { [r] (x : 𝜏) at 𝜌 ⇒ s0}; s

The list of region parameters scopes over the parameter types, the return type, the annotated region

𝜌 , and the body of function s. We apply functions to a list of regions 𝜌 and a list of arguments e.
We introduce two additional concepts: type-level regions and term-level evidence. Type-level

regions 𝜌 are either region variables r or the top-level region T. Intuitively, the top-level region

denotes the bottom part of the runtime stack. Term-level evidence expressions are either an

evidence variable l, the empty evidence 0witnessing reflexivity of subregioning, or the composition

of evidence e ⊕ e, witnessing the transitivity of subregioning.

6

All About That Stack Technical Report, 2021, University of Tübingen

Statement Typing.

Γ
↑

𝜌
↑
⊢ s

↑
: 𝜏

↓

Γ 𝜌 ⊢ s0 : 𝜏0 Γ, x0 : 𝜏0 𝜌 ⊢ s : 𝜏

Γ 𝜌 ⊢ val x0 = s0; s : 𝜏
[Val]

Γ ⊢ e : 𝜏

Γ 𝜌 ⊢ return e : 𝜏
[Ret]

Γ ⊢ e0 : ∀[r] (𝜏) →𝜌0 𝜏0 Γ ⊢ e : 𝜏 [r ↦→ 𝜌] 𝜌 = 𝜌0 [r ↦→ 𝜌]
Γ 𝜌 ⊢ e0 [𝜌] (e) : 𝜏0 [r ↦→ 𝜌]

[App]

Expression Typing.

Γ
↑
⊢ e

↑
: 𝜏

↓

Γ(x) = 𝜏

Γ ⊢ x : 𝜏
[Var] Γ ⊢ n : Int

[Lit] Γ, r, x : 𝜏 𝜌 ⊢ s0 : 𝜏0

Γ ⊢ { [r] (x : 𝜏) at 𝜌 ⇒ s0 } : ∀[r] (𝜏) →𝜌 𝜏0
[Fun]

Γ ⊢ 0 : 𝜌 ⊑ 𝜌
[Reflexive] Γ ⊢ e : 𝜌 ⊑ 𝜌 ′ Γ ⊢ e′ : 𝜌 ′ ⊑ 𝜌 ′′

Γ ⊢ e ⊕ e′ : 𝜌 ⊑ 𝜌 ′′
[Transitive]

Fig. 3. Type system of our base language Λ𝜌 .

3.2 Typing
Figure 3 defines the typing rules ofΛ𝜌 . We type statements and expressions with different judgement

forms. While both are typed in an environment Γ containing value and region bindings, only

statements are typed in a given region 𝜌 . Statements may perform effectful (that is, serious in the

terminology of Reynolds [1972]) computation, which is only safe in specific regions. In contrast,

expressions are pure (that is, trivial) and can be evaluated independent of any region.

3.2.1 Typing of Statements. Rule Val types sequencing of statements. We type the two statements

s0 and s in the same region 𝜌 of the compound statement. Returning a result of a computation (rule

Ret) can be typed in any region. In rule App we apply a function e0 to a list of regions 𝜌 and to a

list of arguments e. The type of e0 is a function type in a region 𝜌0. The overall statement is typed

in a region 𝜌 . The premise 𝜌 = 𝜌0 [r ↦→ 𝜌] requires that, after substituting the regions 𝜌 for the

region variables r both have to syntactically be the same. Note that we do not have any implicit

or explicit subtyping of function types here or elsewhere. All region subtyping exclusively occurs

through the passing of subregioning evidence.

3.2.2 Typing of Expressions. The typing rules for variables Var and primitives Lit are standard.

Rule Fun types functions. We type the body of the function s0 in an environment extended with the

region parameters r and value parameter types x : 𝜏 . Every function is annotated with a region 𝜌

that specifies exactly the region it will have to be called in. This region 𝜌 is also the region we type

the body s0 in. The region parameters r may appear in the parameter types, the return type, the

function’s region 𝜌 , and body s0. As we will see, this allows us to write region-polymorphic functions
that can run in any region. Value parameters of evidence type allow us to write region-polymorphic

functions that are constrained to run in a subregion that meets these constraints.

3.2.3 Typing of Evidence. Reflexivity evidence 0 witnesses that every region is nested within itself,

and transitivity evidence e ⊕ e′ witnesses the transitivity of nesting, which is reflected in their

typing rules. We require the composition of evidence to be associative.

Our language Λ𝜌 , as presented, provides the necessary framework but does not contain features

with interesting operational behavior. While we can abstract over regions, eventually all region

variables will be instantiated with the top-level region and evidence will always be the trivial

evidence. Therefore, we now introduce two extensions and then present the operational semantics.

7

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Extended Typing Rules:

Γ, r, x : Arena r 𝜏 ′, l : r ⊑ 𝜌 r ⊢ s : 𝜏

Γ 𝜌 ⊢ arena { [r] (x, l) ⇒ s } : 𝜏
[Arena]

Γ ⊢ e : Arena 𝜌 ′ 𝜏 ′ Γ ⊢ e0 : 𝜏 ′ Γ ⊢ i : 𝜌 ⊑ 𝜌 ′

Γ 𝜌 ⊢ alloc(e, e0, i) : Ptr 𝜌 ′ 𝜏 ′
[Alloc]

Γ ⊢ e : Ptr 𝜌 ′ 𝜏 ′ Γ ⊢ i : 𝜌 ⊑ 𝜌 ′

Γ 𝜌 ⊢ load(e, i) : 𝜏 ′
[Load]

Fig. 4. Extension of Λ𝜌with arena-based memory management (Λ𝜌 [Mem]).

3.3 Arenas
In this subsection, we add statements for region-based resource management. They introduce and

eliminate non-trivial evidence and provide the basis for our correspondence theorem. Figure 4

introduces three additional statement forms and extends our base language to Λ𝜌 [Mem].
The arena statement delimits a new region in which we run the statement s. It introduces three

variables, a fresh region variable r , a variable x : Arena r , and evidence l : r ⊑ 𝜌 , witnessing that

the fresh region r is a subregion of the outer region 𝜌 . Conceptually, the arena statement allocates

a fresh arena and pushes the pointer to this arena onto the runtime stack. It runs the statement s in
this extended context to then deallocate the arena and pop the pointer. In our formalization, we

refrain from modeling memory and only push and pop a fresh pointer (that is, marker).

The alloc statement receives an arena argument e, an initial value e0, and an evidence argument

i : 𝜌 ⊑ 𝜌 ′
that witnesses that the current region 𝜌 is nested within the given region 𝜌 ′

. Rule Load

for load statements is similar. Because we do not model memory in our formalization, instead of

alloc and load we have a statement check with the following typing rule:

Γ ⊢ e : Arena 𝜌 ′ 𝜏 ′ Γ ⊢ i : 𝜌 ⊑ 𝜌 ′

Γ 𝜌 ⊢ check(e, i) : Unit

[Check]

It asserts that the given arena is on the stack. We can implement alloc and load safely by first

performing this check and then using primitives for memory operations.

3.3.1 Region Polymorphism and Subregioning Evidence. To illustrate region polymorphism and the

usage of subregioning evidence let us consider a few examples.

def f() at T { return 5 };
arena { [r1](a1, l1) ⇒ f() /* type error */ }

def f[r]() at r { return 5 };
arena { [r1](a1, l1) ⇒ f[r1]() }

On the left, we define a function f that has to run in the top-level region T. This example does

not typecheck, since we try to call f in the fresh region r1. If we want f to be callable in any

region, we have to give it a region-polymorphic type, as on the right. At the call site, we have to

instantiate the region parameter of f to the region r1 in which we call it. We can constrain the

region-polymorphic function to a specific region by requiring evidence as a parameter.

arena { [r1](a1, l1) ⇒
def f[r](l: r ⊑ r1) at r { val u = check(a1, l); return 5 };

arena { [r2](a2, l2) ⇒ f[r2](l2) }

}

Here we say that we can call f in any region r that is within r1. At the call-site we instantiate r to

r2 and provide the appropriate evidence.

8

All About That Stack Technical Report, 2021, University of Tübingen

Extended Typing Rules:

Γ, r, x : Handler r, l : r ⊑ 𝜌 r ⊢ s0 : 𝜏 Γ 𝜌 ⊢ s : 𝜏

Γ 𝜌 ⊢ try { [r] (x, l) ⇒ s0 } catch s : 𝜏
[Try]

Γ ⊢ e : Handler 𝜌 ′ Γ ⊢ i : 𝜌 ⊑ 𝜌 ′

Γ 𝜌 ⊢ throw(e, i) : 𝜏
[Check]

Fig. 5. Extension of Λ𝜌with exceptions (Λ𝜌 [Exc]).

Semantics of Evidence and Regions:

m ::= @a5f | @4b2 | ... markers

w ::= · | m :: w evidence values

u ::= · | m :: u region values

Extended Syntax:

s ::= ...

| #arenam { s } arena marker

| #catchm { s } { s } catch marker

v ::= ... | w evidence value

𝜌 ::= ... | u region value

Extended Typing:

Γ m :: u ⊢ s0 : 𝜏

Γ u ⊢ #arenam { s0 } : 𝜏
[ArenaMarker]

Γ m :: u ⊢ s0 : 𝜏 Γ u ⊢ s : 𝜏

Γ u ⊢ #catchm { s0 } { s } : 𝜏
[CatchMarker]

u0 = w ++ u1
Γ ⊢ w : u0 ⊑ u1

[Evidence]

Fig. 6. Run-time syntax and typing of Λ𝜌 [Mem, Exc].

3.4 Exceptions
We now add statements for exceptions. We refer to the extended language as Λ𝜌 [Exc]. The two
new statement forms are given in Figure 5.

The try ... catch ... statement delimits a new region in which we run the enclosed statement s.
It introduces three variables, a fresh region variable r , a variable x : Handler r , and an evidence

variable l : r ⊑ 𝜌 , witnessing that the fresh region r is a subregion of the outer region 𝜌 . As we

will see, operationally it installs a catch frame on the runtime stack, labeled with a fresh marker.

The handler x contains this label in order to allow throwing to the correct exception handler.

The throw statement is checked similarly to alloc. Operationally, it throws to the given handler

by unwinding the stack until it hits a catch frame with this exact marker and then executes the body

of the catch clause. Again, evidence guarantees that unwinding never fails, i.e. the corresponding
maker is always somewhere on the runtime stack.

3.5 Operational Semantics
We now define a substitution-based, small-step operational semantics for the language with both

arenas and exceptions which we call Λ𝜌 [Mem, Exc].
Figure 6 extends this language with run-time constructs. These do not appear in source programs

but are introduced during evaluation. A region value is an ordered list of runtime markers on

the runtime stack, from innermost to outermost. While in the source language regions are on the

type-level, during evaluation every region will become such a region value. An evidence value is

an ordered list of markers too. Rules ArenaMarker and CatchMarker type the new runtime

statements. During evaluation the region we type these statements in will be a region value u.
This region value is the list of markers in the evaluation context of the statement, i.e. the runtime

9

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Syntax of Contexts:

K ::= □ | val x = K; s | #arenam { K } | #catchm { K } { s }

Congruence:

⌈.⌉ : K → u
⌈□⌉ = ·
⌈val x = K; s⌉ = ⌈K⌉
⌈#arenam { K }⌉ = ⌈K⌉ ++ m
⌈#catchm { K } { s }⌉ = ⌈K⌉ ++ m

s → ⌈K⌉ s′

K[s] ↦−→ K[s′]
(cong)

Reduction in Context:

(ret) val x = return e; s →u s[x ↦→ VJeK]

(app) { [r] (x : 𝜏) at 𝜌 ⇒ s0 }[u] (e) →u s0 [r ↦→ u] [x ↦→ VJeK]
where u = 𝜌 [r ↦→ u]

(arena) arena { [r] (x, l) ⇒ s0 } →u
#arenam { s0 [r ↦→ m :: u] [x ↦→ m] [l ↦→ m :: ·] }

where m fresh

(check) check(m, i) →u return ()
where m ∈ u

(poparena) #arenam { return e } →u returnVJeK

(try) try { [r] (x, l) ⇒ s0 } catch { s }→u
#catchm { s0 [r ↦→ m :: u] [x ↦→ m] [l ↦→ m :: ·] } { s }

where m fresh

(unwind1) val x = throw(m, i); s →u throw(m, i)

(unwind2) #arenam′ { throw(m, i) } →u throw(m, w)
whereVJiK = m′

:: w

(unwind3) #catchm′ { throw(m, i) } { s } →u throw(m, w)
whereVJiK = m′

:: w and where m′ ≠ m

(catch) #catchm { throw(m, i) } { s } →u s
whereVJiK = ·

(popcatch) #catchm { return e } { s } →u returnVJeK

Evaluation of Expressions:

VJ0K = .

VJe1 ⊕ e2K = VJe1K ++ VJe2K
VJvK = v

Fig. 7. Operational semantics of Λ𝜌 [Mem, Exc]

stack. The enclosed statement s0 is typed in an extended runtime region m :: u. Rule Evidence
types evidence values and connects run-time evidence, type-level regions, and run-time regions.

At runtime, the evidence value w, the runtime region u0 and the runtime region u1 will all be lists
of markers. The evidence w is precisely the difference between the runtime regions u0 and u1. Our
proof of preservation ensures that this invariant always holds throughout reduction.

3.5.1 Reduction Semantics. Figure 7 defines a small-step operational semantics for Λ𝜌 [Mem, Exc].
It is all about that stack: the evaluation context K directly models the runtime stack with normal

10

All About That Stack Technical Report, 2021, University of Tübingen

stack frames, arena markers, and catch clauses. The crucial rule is the one for congruence (cong). It
defines the reduction relation of statements ↦−→ in terms of a reduction relation →u

, where u is a

run-time region extracted from the actual context as ⌈K⌉. Indexing the reduction by the current

runtime region allows us to establish the correspondence between regions as they appear on the

type level and the concrete region as the list of markers on the runtime stack at run time.

Since evaluation of expressions does not affect the evaluation context, we present its reduction

as a big-step reduction rule VJ · K. The reflexivity evidence is the empty list of markers and

transitivity of evidence appends the two lists of markers. If we had (trivial) primitives like addition

we would define their reduction in this rule, too. Rule (ret) is fairly standard. In the rule for function

application (app), we check that the annotated region 𝜌 matches exactly (after substitution) the

actual run-time region. A non matching region results in a stuck term.

In rule (arena), we create a fresh marker m and run the statement s in a context with this new

marker added. We substitute the extended runtime region (m :: u) for the region variable r . We

substitute the fresh markerm for the arena variable x. The evidence variable l witnesses the nesting
of r in 𝜌 by describing the difference between the two runtime regions as a singleton list of the

fresh marker m. Rule (check) asserts that the marker m is an element of the current runtime region

u. It returns the unit value when this check succeeds and gets stuck otherwise.

Rule (try) does the same as rule arena, but pushes a catch frame onto the stack instead of an

arena frame. When an exception is thrown we unwind the stack frame by frame until we find

the matching catch frame. We pop elements off the evidence i in lock step with popping arena-

and catch frames off the stack. We assert that we find the matching catch frame exactly when the

evidence value is the empty list: the evidence value precisely reflects the list of markers between

the region of the throw statement and the region of the catch statement.

We mechanized the formalization of Λ𝜌 [Mem, Exc] in the Coq theorem prover and showed the

usual theorems of progress and preservation.

Theorem 3.1 (Progress).

If ∅ · ⊢ s : 𝜏 , then either s ↦−→ s′ or s is of the form return v for some value v.

Theorem 3.2 (Preservation).

If ∅ · ⊢ s : 𝜏 and s ↦−→ s′ then ∅ · ⊢ s′ : 𝜏 .

3.6 Region- and Evidence Correspondence
The goal of this section was to formally establish the connection between type-level regions and

term-level evidence in the presence of region-based resource management (arenas) and control ef-

fects (exceptions) during evaluation. We’ve set everything up so the following two simple corollaries

hold by construction:

Corollary 3.3 (Region Correspondence).

If ∅ · ⊢ K[s] : 𝜏 , then ∅ ⌈K⌉ ⊢ s : 𝜏 ′ for some type 𝜏 ′.

Corollary 3.4 (Evidence Correspondence).

If an evidence values w has type u0 ⊑ u1 for some runtime regions u0 and u1 then u0 = w ++ u1.

Type-level region variables stand for exactly the lists of markers that the current runtime context

contains. Evidence values are exactly the difference between two such lists. These corollaries are

inspired by the similarly named theorem of Xie et al. [2020].

Together, these corollaries make runtime regions and runtime evidence on the one hand and

marker frames on the stack on the other hand redundant: We could erase regions and evidence as

they do not have any significance at runtime. In the next section we are going to do the opposite:

Erase marker frames and solely rely on evidence terms to have the correct content at runtime.

11

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Translation of Types:

T J Int K = Int

T J r K = r
T J T K = Void

T J ∀[r] (𝜏) →𝜌 𝜏0 K = ∀r . T J𝜏K → Cps T J 𝜌 K T J 𝜏0 K
T J 𝜌 ⊑ 𝜌 ′ K = ∀a. Cps T J 𝜌 ′ K a → Cps T J 𝜌 K a

Translation of Statements:

SJ val x = s0; s1 K𝜌 = 𝜆k ⇒SJ s0 K𝜌 (𝜆x ⇒SJ s1 K𝜌 k)
SJ return e K𝜌 = 𝜆k ⇒ k (EJeK)
SJ e0 [𝜌] (e) K𝜌 = EJe0K T J 𝜌 K EJeK

Translation of Expressions:

EJ x K = x
EJ { [r] (x : 𝜏) at 𝜌 ⇒ s} K = Λr ⇒ 𝜆x ⇒SJ s K𝜌
EJ 0 K = Λa ⇒ 𝜆m ⇒ m
EJ e1 ⊕ e2 K = Λa ⇒ 𝜆m ⇒ EJ e1 K a (EJ e2 K a m)

Auxiliary Definitions:

Cps R A = (A→ R) → R

Fig. 8. Translation from Λ𝜌 to System F.

4 COMBINING REGIONS AND EFFECTS VIA CONTINUATION-PASSING STYLE
We now give a denotational semantics to Λ𝜌 [Mem, Exc] as a translation to System F in CPS. Again,

it is all about that stack: evaluation contexts K now become continuations [Danvy 2004]. In our

translation, regions correspond to answer types and evidence terms are translated to answer-type
coercions, generalizing the interpretation of evidence by Fluet and Morrisett [2004]. By translation

into CPS, the semantics is easily extensible, allowing us to present multiple different extensions

that naturally can be composed without changing the denotations of the others.

Our translation to System F can also serve as a compilation technique for languages with effects

and resources into any language that supports first-class functions, whichmakes it widely applicable.

Moreover, it is a generalization of the translation presented by Schuster et al. [2020], which has

been shown to enable compile-time optimizations for significant performance improvements.

We implemented Λ𝜌 and all of the extensions and examples of this section in the dependently

typed language Idris 2 [Brady 2020] as a shallow embedding. This serves to establish two things:

Firstly, the translations take well-typed terms to well-typed terms in System F and soundness

directly follows from the soundness of System F. Secondly, running the examples yields the expected

results indicating that all language constructs plausibly do what they should under this semantics.

4.1 Translation of the Base Language Λ𝜌

To give semantics to Λ𝜌 and to its extensions, we translate them to System F in one particular

variant of CPS, called iterated CPS [Danvy and Filinski 1990; Schuster and Brachthäuser 2018]. That

is, we use a more structured form of continuations (or stacks). Every stack segment, delimited by a

marker, is represented by its own continuation argument. In other words, in iterated CPS, functions

do not receive one but potentially multiple continuations.

12

All About That Stack Technical Report, 2021, University of Tübingen

Translation of Types. Figure 8 defines the translation of Λ𝜌 to System F. Base types, such as Int

are left unchanged by the translation. We translate region variables to type variables in System F

and the toplevel region to the empty type Void. The translation on types shows that the iterated

CPS translation is very similar to the traditional CPS translation. In particular, the auxiliary meta-

definition Cps R A is defined as the familiar type (A → R) → R of computations in CPS with return
type A and answer type R. Evidence terms are functions between effectful computations, as can be

seen from the translation of evidence types.

Translation of Terms. As usual in CPS, we translate sequencing of statements to push a frame

onto the current continuation k, that is, the continuation first runs s1 and then continues with k.
Return statements are translated to calls to the current continuation. Again, viewing continuations

as stacks, this is in accordance with the operational semantics given in Section 3.5. In general,

statements with return type 𝜏 that have to be run in a region 𝜌 are translated to terms of type

Cps T J𝜌K T J𝜏K. This can for instance be seen in the translation of function types.

The semantics of regions and evidence are as follows.

(1) We translate regions to answer types. Each of the extensions is free to choose a different

answer type. Region abstractions are translated to type abstractions and region polymorphic

functions have a polymorphic answer type. To make the connection to our overview in

Figure 1, throughout the current section, we will highlight the choice of answer types as 𝜏 .

(2) We translate evidence expressions to functions that lift a computation to run in a differ-

ent region. The concrete implementation of evidence is again up to the specific extension.

Generally, the reflexivity evidence is translated to the polymorphic identity function, and

transitivity of evidence amounts to function composition. Again, to make the connection to

our overview, we highlight the denotational choice of evidence as Λa ⇒ 𝜆m ⇒

These two aspects represent the key novelty of our translation. To emphasize, the translated type

of evidence ∀a. Cps T J 𝜌 ′ K a → Cps T J 𝜌 K a tells us that evidence transforms a computation to

have a different answer type! Comparing this type to our interpretation of evidence in the previous

section, it not merely tells us the difference between two regions, it actually allows us to move
between regions on the stack. This interpretation is also in accordance with the visualization of

Figure 1: evidence tells us how to do a control transfer from one region to another.

We translate well-typed programs in Λ𝜌 and all of its extensions presented in this section to

well-typed programs in System F. The accompanying Idris code is a proof of this.

Theorem 4.1 (Well-typedness of Translated Terms).

If Γ 𝜌 ⊢ s : 𝜏 , then T J Γ K ⊢ SJsK𝜌 : (T J 𝜏 K → T J 𝜌 K) → T J 𝜌 K

In the remainder of this section, we extend our base languageΛ𝜌 and define translations for different

language features, such as exceptions, finalizers, effect handlers, mutable state, or dynamic-wind.

All translations are based on the idea of regions as answer types and evidence terms as answer-type

coercions. The translation of the base language stays the same.

4.2 Arenas
In Figure 4, we have seen the typing rules for Λ𝜌 [Mem]. Now we give translation of this feature

to CPS. In general, the same approach works also for resources other than memory, such as file

handles. In Section 4.4 we present a more general finalization construct.

Translation. Figure 9 defines the translation of Λ𝜌 [Mem] to CPS. We do not need any runtime

checks to prevent pointers from being used outside of their region, justified by Corollaries 3.3

and 3.4. The arena statement creates a fresh arena.When control leaves the enclosed block, memory

13

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Extended Translation Rules:

T J Arena 𝜌 𝜏 K = PrimArena
T J Ptr 𝜌 𝜏 K = PrimPtr

SJ arena { [r] (x, l) ⇒ s0 } K𝜌 =

RunArena (𝜆h ⇒ (Λr ⇒ 𝜆x ⇒ 𝜆l ⇒SJ s0 Kr) (T J 𝜌 K) h (LiftArena h))

SJ alloc(e, e0, i) K𝜌 = 𝜆k ⇒ k (allocPrimPtr EJeK EJe0K)
SJ load(e, i) K𝜌 = 𝜆k ⇒ k (loadPrimPtr EJeK)

Auxiliary Definitions:

RunArena : (PrimArena→ Cps R A) → Cps R A
RunArena = 𝜆m ⇒ 𝜆k ⇒

let h = allocPrimArena (); m h (𝜆x ⇒ freePrimArena h; k x)

LiftArena h : ∀a. Cps R a → Cps R a
LiftArena h = Λa ⇒ 𝜆m ⇒ 𝜆k ⇒ freePrimArena h; m k

Fig. 9. Translation of Λ𝜌with arena-based memory management (Λ𝜌 [Mem]).

in the arena is destroyed. In its translation we use the auxiliary meta function RunArena. It binds

the current continuation k and allocates a primitive arena h. We run the given computation m with

h and a continuation where we push a frame that frees the arena onto the current continuation

k. In the body of the arena statement we abstract over a region r , an arena x, and evidence l.
We apply this function to three arguments: The outer region 𝜌 , the primitive arena h, and the

evidence LiftArena h. Importantly, this evidence will free the arena. This corresponds to allocating

a specialized frame on the stack for finalization. The alloc statement allocates a value into an arena.

We require evidence that the arena is still live, i.e. on the runtime stack, but don’t actually use it.

Similarly, when we use the load statement to load a value from a pointer, we require evidence that

the corresponding arena is still live, which it always is. Evidence terms are translated to functions

(Section 4) whereas in Section 3.5 evidence was a list of markers. However, under our translation,

evidence still contains a list of markers. It is just hidden in the closure environment of the evidence.

Evidence composition concatenates these lists.

Example 4.2. Let us consider a simplified version of the motivating example (Section 2.1). The

example on the left translates to the term in System F in the right. It has type Cps Void Int.

arena {
[r1](a1: Arena r1 A, l1: r1 ⊑ T) ⇒

val ptr = alloc(a1, aValue, 0);
return 0

}

𝜆k ⇒
let h = allocPrimArena ();
(Λr1 ⇒ 𝜆a1 ⇒ 𝜆l1 ⇒ 𝜆k1 ⇒
let ptr = allocPrimPtr a1 aValue;
k1 0) Void h
(Λa ⇒ 𝜆m ⇒ 𝜆k ⇒ freePrimArena h; m k)
(𝜆x ⇒ 𝜆k ⇒ freePrimArena h; k x)

This term can be simplified to the following

𝜆k ⇒ let h = allocPrimArena (); let ptr = allocPrimPtr h aValue; freePrimArena h; k 0

So far, we have not used any evidence yet. All control flow is local and the only way to leave a

region is to return from it. In the next section we will add exceptions as an example of a control

operator with non-local control transfer.

14

All About That Stack Technical Report, 2021, University of Tübingen

Extended Translation Rules:

T J Handler 𝜌K = Cps T J 𝜌 K Void

SJ try { [r] (x, l) ⇒ s0 } catch { s } K𝜌 =

RunCps ((Λr ⇒ 𝜆x ⇒ 𝜆l ⇒SJ s0 Kr) (Cps T J 𝜌 K T J 𝜏 K) (𝜆k ⇒SJ s K𝜌) (LiftCps))

SJ throw(e, i) K𝜌 = EJiK Void EJeK

Auxiliary Definitions:

RunCps : Cps (Cps R A) A→ Cps R A
RunCps = 𝜆m ⇒ m (𝜆x ⇒ 𝜆k ⇒ k x)

LiftCps : ∀a. Cps R a → Cps (Cps R R′) a
LiftCps = Λa ⇒ 𝜆m ⇒ 𝜆k ⇒ 𝜆j ⇒ m (𝜆x ⇒ k x j)

Fig. 10. Translation of Λ𝜌with exceptions (Λ𝜌 [Exc]).

4.3 Exceptions
Figure 5 presented the extension of Λ𝜌 with exceptions (Λ𝜌 [Exc]). In Section 3.5 we have seen an

operational semantics for this language. Now we present translation for this language to System F.

Whereas in the operational semantics we have divided the stack into regions with markers, we

now have multiple stacks, i.e. continuations. We have seen that evidence terms contained exactly

the list of markers we have to unwind when we throw to a handler. Now we take advantage of this

fact and let the evidence be the unwinding action itself.

Translation. Figure 10 defines the semantics of exceptions as a translation to System F. It generalizes

the translation to double-barreled CPS from [Kennedy 2007] to iterated CPS. In the translation of

the try ... catch ... statement, we use RunCps. It runs the given computation m with an additional

continuation which is initially empty. We instantiate the answer type r of the translated body s0 to
be the type Cps T J𝜌K T J𝜏K. A Handler 𝜌 is a CPS expression that aborts the current continuation.

The evidence l lifts the given computation from the inner region to the outer region. It will be

bound to LiftCps which pushes the current continuation onto the next one. In the translation

of a throw(e, i) statement, to abort the current continuation, we now use the evidence to lift

the handler into the correct region. This way, the handler can run in the current region and is

compatible to the current answer type.

Example 4.3. Let us consider the motivating example with exceptions from Section 2.2. Again,

the example on the left is translated to the resulting System F term of type Cps Void Int on the

right.

try { [r1](e1 : Handler r1, l1 : r1 ⊑ T) ⇒
safeDiv[r1](5, 0, e1)

} catch {
return 0

}

(Λr1 ⇒ 𝜆e1 ⇒ 𝜆l1 ⇒
safeDiv r1 5 0 e1

) (Cps Void Int)
(𝜆k1 ⇒ 𝜆k2 ⇒ k2 0)
(Λa ⇒ 𝜆m ⇒ 𝜆k ⇒ 𝜆j ⇒ m (𝜆x ⇒ k x j))
(𝜆x ⇒ 𝜆k ⇒ k x)

The resulting System F term can be further simplified to:

𝜆k2 ⇒ safeDiv (Cps Void Int) 5 0 (𝜆k1 ⇒ 𝜆k2 ⇒ k2 0) (𝜆x ⇒ 𝜆k ⇒ k x) k2

15

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Extended Typing Rules:

Γ, r, l : r ⊑ 𝜌 r ⊢ s0 : 𝜏 Γ 𝜌 ⊢ s : ()
Γ 𝜌 ⊢ try { [r] (l) ⇒ s0 } unwind { s } : 𝜏

[Unwind]

Extended Translation Rules:

SJ try { [r] (l) ⇒ s0 } unwind { s } K𝜌 =

(Λr ⇒ 𝜆l ⇒SJ s0 Kr) T J 𝜌 K (LiftFin SJ s K𝜌)

Auxiliary Definitions:

LiftFin f : ∀a. Cps R a → Cps R a
LiftFin f = Λa ⇒ 𝜆m ⇒ 𝜆k ⇒ f (𝜆u ⇒ m k)

Fig. 11. Extension of Λ𝜌with finalizers (Λ𝜌 [Fin]).

We instantiate the answer type r of safeDiv with r1 which we then instantiate to the type

Cps Void Int. Its overall return type is then Cps (Cps Void Int) Int. It receives two continuations.

The exception handler e1 discards the first continuation and returns 0 to the second.

Our translation to CPS is compositional and as such interacts nicely with the evidence terms we

have defined for arenas in Section 4.2: We free an arena exactly when an exception is thrown across

it. We now generalize this idea and run a user-defined cleanup action whenever we leave a region.

4.4 Finalizers
In Figure 11, we again extend Λ𝜌 , this time with finalizers (Λ𝜌 [Fin]). The try ... unwind ... state-

ment runs the action s whenever an exception would cause control to leave the corresponding try.
The cleanup action will not be called upon normal return.

Translation. In the translation, the evidence LiftFin f will run the cleanup statement f , ignore its
result (bound to u), and continue to run the rest of the evidence m. This is a generalization of the

translation of the arena statement: Instead of freeing the arena, we run an arbitrary user-defined

cleanup action. The evidence contains this cleanup action. When we compose evidence it will

conceptually contain a list of cleanup actions that are all run sequentially.

Example 4.4. The following example illustrates what happens in our semantics when a finalizer

itself throws an exception.

try { [r1](e1 : Handler r1, l1 : r1 ⊑ T) ⇒
try { [r2](l2 : r2 ⊑ r1) ⇒

throw(e1, l2)

} unwind {

throw(e1, 0)

}

} catch { return 0 }

To throw from region r2 to region r1, we have to provide evidence that r2 ⊑ r1. It contains the
finalization function which will be called. The unwind statement runs in region r1, to throw from

it we have to provide evidence that r1 ⊑ r1. Because the finalizer is part of the evidence, throwing
from it will abort finalization and start to run the evidence given to the throw statement.

In the following subsection, we look at a control operator that exposes the delimited continuation

of the current computation to the programmer.

16

All About That Stack Technical Report, 2021, University of Tübingen

Extended Typing Rules:

Γ, r, x : Prompt r 𝜌 𝜏, l : r ⊑ 𝜌 r ⊢ s : 𝜏

Γ 𝜌 ⊢ reset { [r] (x, l) ⇒ s } : 𝜏
[Reset]

Γ ⊢ e : Prompt 𝜌 ′ 𝜌0 𝜏0 Γ ⊢ i : 𝜌 ⊑ 𝜌 ′ Γ, k : (𝜏) →𝜌0 𝜏0 𝜌0 ⊢ s0 : 𝜏0

Γ 𝜌 ⊢ shiftTo(e, i) { (k) ⇒ s0 } : 𝜏
[ShiftTo]

Extended Translation Rules:

T J Prompt 𝜌 𝜌0 𝜏0 K = ∀a. Cps (Cps T J𝜌0K T J𝜏0K) a → Cps T J𝜌K a

SJ reset { [r] (x, l) ⇒ s } K𝜌 =

RunCps ((Λr ⇒ 𝜆x ⇒ 𝜆l ⇒SJ s Kr) (Cps T J 𝜌 K T J 𝜏 K) (Λa ⇒ 𝜆m ⇒ m) (LiftCps))

SJ shiftTo(e, i) { (k) ⇒ s0 } K𝜌 = EJiK (T J𝜏K) (EJeK (T J𝜏K) (𝜆k ⇒SJ s0 K𝜌0

))

Fig. 12. Extension of Λ𝜌with a control operator (Λ𝜌 [Shf]).

4.5 Control Operators
Whereas exceptions allow us to jump out of a region, more general control operators allow us

to jump back into it. There are many flavors of control operators that capture the continuation

and give programmers the choice to resume computation, perhaps multiple times, or discard the

continuation and abort [Danvy and Filinski 1990; Dybvig et al. 2007; Felleisen 1988; Sitaram and

Felleisen 1990]. They are useful for structuring programs with complex control flow and can express

a large number of useful idioms [Haynes 1987; Hieb and Dybvig 1990; Leijen 2017].

Figure 12 extends Λ𝜌 with an operator for delimited control (Λ𝜌 [Shf]). We install a delimiter

with reset. The body s runs in a fresh region r . The body is also given access to a prompt x of type

Prompt r 𝜌 𝜏 . It witnesses that when we are in region r and we can shift to the outer region 𝜌 with

an answer type 𝜏 . Finally, the body has access to evidence l that the fresh region r is inside of the
outer region 𝜌 . We capture the current continuation with shiftTo, which has three arguments: the

prompt e that we want to capture the continuation to, evidence i that (conceptually) this prompt

is currently on the stack, and a body s that can use the current continuation k. While the overall

statement runs in region 𝜌 , the body runs in region 𝜌0 and has to answer with a type 𝜏0. Also, the

continuation k has to run in the very same region 𝜌0 and will return an answer of type 𝜏0.

Translation. The translation uses iterated CPS in a way very similar to how we translated exceptions

in Section 4.3. To translate the delimiter reset, we again don’t segment the stack with markers, but

have multiple stacks (i.e. continuations). The evidence explains how to capture the correct number

of continuations. Differently to exceptions, however, is that instead of running a fixed handler we

now run the given body s0 in the translation of shiftTo. We do not discard the continuation k, it
can occur free in the translated body s0.

Example 4.5. The following classical example by Danvy and Filinski [1990] uses delimited control

to compose the current continuation with itself 1 + reset(10 + shift (𝜆k ⇒ k (k 100))). Calling
the continuation twice, duplicates the frame 10 + □ and thus running the example evaluates to

1 + (10 + (10 + 100)) = 121. Translated to Λ𝜌 [Shf] it looks like this:
1 + reset { [r1](p1, l1) ⇒ 10 + shiftTo(p1, 0) { (k) ⇒ k(k(100)) } }

Let us assume this statement runs in a region r0. Then the prompt p1 has type Prompt r1 r0 Int. We

can use it in region r1 (and any subregion) to capture the current continuation and jump back into

17

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Extended Typing Rules:

Γ, r, f : Cap r 𝜏1 𝜏2, l : r ⊑ 𝜌 r ⊢ s0 : 𝜏

Γ, x : 𝜏1, k : Cap 𝜌 𝜏2 𝜏 𝜌 ⊢ s : 𝜏

Γ 𝜌 ⊢ try { [r] (f , l) ⇒ s0 } with { (x, k) ⇒ s } : 𝜏
[Try]

Γ ⊢ e0 : Cap 𝜌 ′ 𝜏1 𝜏2 Γ ⊢ e : 𝜏1
Γ ⊢ i : 𝜌 ⊑ 𝜌 ′

Γ 𝜌 ⊢ do(e0, e, i) : 𝜏2
[Do]

Extended Translation Rules:

T J Cap 𝜌 𝜏1 𝜏2K = T J𝜏1K → Cps T J𝜌K T J𝜏2K

SJ do(e0, e, i) K𝜌 = EJiK (T J𝜏2K) (EJe0K EJeK)

SJ try { [r] (x, l) ⇒ s0 } with { (x, k) ⇒ s } K𝜌 =

RunCps ((Λr ⇒ 𝜆x ⇒ 𝜆l ⇒SJ s0 Kr) (Cps T J𝜌K T J𝜏K) (𝜆x ⇒ 𝜆k ⇒SJ s K𝜌) (LiftCps))

Fig. 13. Extension of Λ𝜌with effect handlers (Λ𝜌 [Eff]).

region r0. The type of the result of reset, i.e. the answer type, is Int. In the body of shiftTo we can

safely use everything we can use in region r0. The continuation k has type (Int) →𝜌0
Int, signaling

that it runs in region 𝜌0, the one outside of the reset. Both calls to the continuation 𝜌0 happen in

exactly that region.

The control operator shiftTo that we introduced here, is more limited than other control operators.

We statically enforce the restriction of scoped resumptions [Xie et al. 2020], that is, the continuation
will always be called in exactly the same region that it was based in. For the same reason, even though

we use the word “Prompt”, this is very different from multi-prompt delimited control [Sitaram

and Felleisen 1990]. In the next subsection we will look at a different way to access delimited

continuations: effect handlers.

4.6 Effect Handlers
Among the different approaches to effect handlers, the one that fits particularly nicely with

our framework are effect handlers in capability-passing style [Brachthäuser and Schuster 2017;

Brachthäuser et al. 2020a]. In this style, an effect handler delimits the current continuation and

provides a capability that will capture the current continuation up to the corresponding handler.

Effect safety means that this capability shall only be used within the dynamic extent of the handler.

Figure 13 extends Λ𝜌 with statements and typing rules for effect handlers, resulting in the

language Λ𝜌 [Eff]. The try ... with ... statement for effect handlers is very similar to the one for

exception handlers. The delimited statement s0 is typed in a fresh region r . It gets access to a

capability f : Cap r 𝜏1 𝜏2. This capability can be used in region r and in regions nested in it, and

can be applied to an argument of type 𝜏1 to get a result of type 𝜏2.

The statement s in the handler clause gets access to a parameter x and a continuation k. We

model the continuation also as a capability, as we can only use it in region 𝜌 and any region nested

in 𝜌 . This restriction is important to guarantee effect safety. The continuation might itself use effect

operations and we want to guarantee that the corresponding delimiters are on the stack when we

call the continuation. When we use a capability with do(e0, e, i), we supply an argument e and
evidence i that the current region 𝜌 is nested in the region of the capability 𝜌 ′

.

Translation. Figure 13 defines the semantics of effect handlers as a translation to iterated CPS.

Capabilities are (effectful) functions. The translated try ... with ... statement installs a delimiter.

Rather than always discarding the continuation, as was the case in exception handlers, the trans-

lated handler clause s can make use of it. When we perform an effect operation, we apply the

18

All About That Stack Technical Report, 2021, University of Tübingen

translated capability to the translated argument and use the translated evidence to lift the resulting

computation to run in the correct region.

Example 4.6. The following example uses effect handlers to fork the current computation.

def handleForkList[r0, t](

prog : [r](Cap r () Bool, r ⊑ r0) →r t

) at r0 {

try { [r1](fork, l1) ⇒
val result = prog[r1](fork, l1);

return (singletonList(result))

} with { ((), resume) ⇒
val xs = do(resume, true, 0);

val ys = do(resume, false, 0);

append(xs, ys)

}

The function handleForkList provides the capability fork to the given program prog. When we

perform a fork, we capture the current continuation and resume twice: once with true and once

with false and append the resulting lists.

4.7 Local State
Another interesting use-case for region tracking is local mutable state [Launchbury and Peyton Jones

1994]. The idea is that we can use mutable references locally but encapsulate this mutation so that

the overall function is pure [Timany et al. 2017]. For this to be safe, again, it is key that mutable

references are not used outside of their region either directly or through an escaping function

that has closed over them. The typing judgements of Λ𝜌 [State] (Figure 14), the extension of Λ𝜌

with local mutable references, ensure this. It is possible to implement references as raw pointers

into the global heap and perform updates in-place for increased performance. However, naïvly

combining effect handlers and this implementation of local mutable references results in undesired

consequences.

Example 4.7. The interaction of effect handlers and local mutable references is illustrated in the

following example.

handleForkList[T, Int]({ [r1](fork, l1) ⇒
new(8) { [r2](ref, l2) ⇒

val b = do(fork, (), l2);

if (b) { val x = get(ref, 0); set(ref, x + 1, 0) }

else { val x = get(ref, 0); set(ref, x + 2, 0) };

get(ref, 0)

}})

We handle this program with the handler function for fork that we’ve seen in Subsection 4.6. If

we use global mutable references, for example a heap allocated reference cell, we would get the

list [9, 11] as the result of running this program, which is wrong. This program should return

the list [9, 10]. We know that the fork is across the local reference ref, because we have to pass

evidence l2 when we perform the fork.

When we fork the computation, it is important that modifications to references are only performed

locally in the current branch of the computation [Kiselyov et al. 2006; Pauwels et al. 2019]. Moreover,

19

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Extended Typing Rules:

Γ ⊢ e0 : 𝜏0 Γ, r, x : Ref r 𝜏0, l : r ⊑ 𝜌 r ⊢ s : 𝜏

Γ 𝜌 ⊢ new(e0) { [r] (x, l) ⇒ s } : 𝜏
[New]

Γ ⊢ e0 : Ref 𝜌 ′ 𝜏
Γ ⊢ i : 𝜌 ⊑ 𝜌 ′

Γ 𝜌 ⊢ get(e0, i) : 𝜏
[Get]

Γ ⊢ e0 : Ref 𝜌 ′ 𝜏 Γ ⊢ e : 𝜏

Γ ⊢ i : 𝜌 ⊑ 𝜌 ′

Γ 𝜌 ⊢ set(e0, e, i) : ()
[Set]

Extended Translation Rules:

T J Ref 𝜌 𝜏 K = (Unit→ Cps T J𝜌K T J𝜏K) × (T J𝜏K → Cps T J𝜌K Unit)

SJ new(e0) { [r] (x, l) ⇒ s } K𝜌 =

RunState EJe0K ((Λr ⇒ 𝜆x ⇒ 𝜆l ⇒SJ s Kr) (Reader T J𝜏0K T J𝜌K) (Get, Set) (LiftState))

SJ get(e0, i) K𝜌 = EJiK T J𝜏K (fst EJe0K ())
SJ set(e0, e, i) K𝜌 = EJiK T JUnitK (snd EJe0K EJeK)

Auxiliary Definitions:

Reader S A = S → A

RunState : S → Cps (Reader S R) A→ Cps R A
RunState = 𝜆z ⇒ 𝜆m ⇒ 𝜆k ⇒ m (𝜆x ⇒ 𝜆s ⇒ k x) z

LiftState : ∀a. (Cps R a) → (Cps (Reader S R) a)
LiftState = Λa ⇒ 𝜆m ⇒ 𝜆k ⇒ 𝜆s ⇒ m (𝜆x ⇒ k x s)

Get : Unit→ Cps (Reader S R) S
Get = 𝜆u ⇒ 𝜆k ⇒ 𝜆s ⇒ k s s

Set : S → Cps (Reader S R) Unit
Set = 𝜆s ⇒ 𝜆k ⇒ 𝜆d ⇒ k () s

Fig. 14. Extension of Λ𝜌with local state (Λ𝜌 [State]).

modifications to other references, created outside of the handler for fork, should still be visible to

both branches of the computation. Our framework suggests two solutions to this problem.

Translation. Figure 14 presents the semantics of local mutable references as a translation from

Λ𝜌 [State] to System F, that exhibits the correct backtracking behavior. When we introduce a

new mutable reference with new, we run the inner computation at type Cps (Reader E R) A. A
reference is a pair of a getter and a setter. The evidence term will push the current state onto the

continuation. Again, it is “all about that stack”. Conceptually, we put local state onto the stack and

we do so by an appropriate choice of answer type. This translation dictates the correct semantics,

but it would be wasteful in practice, because we use the evidence in all get and set statements

which makes access to references linear in the number of nested reference handlers, and moreover,

when combined with other extensions, runs all computations contained in the evidence. However,

this translation is useful for local optimization of functions that use mutable references when

compiling with continuations [Cong et al. 2019]. Since we translate to pure System F, we reduce

the problem of optimizing mutable references to the problem of optimizing pure functions. We

effectively transform local mutable references to use registers.

20

All About That Stack Technical Report, 2021, University of Tübingen

Example 4.8. As an example for such optimizations consider the statement:

val x = get(ref, 0); set(ref, x + 1, 0)

Using the translation of Λ𝜌 [State] to System F the program translates to

𝜆j ⇒ ((Λa ⇒ 𝜆m ⇒ m) Int ((𝜆u ⇒ 𝜆k ⇒ 𝜆s ⇒ k s s) ())
(𝜆x ⇒ (Λa ⇒ 𝜆m ⇒ m)
Unit ((𝜆s ⇒ 𝜆k ⇒ 𝜆d ⇒ k () s) (x + 1))) j)

and can statically be reduced to 𝜆j ⇒ 𝜆s ⇒ j () (s + 1).

Under our translation, optimization of effectful programs is just inlining and 𝛽-reduction, which is

a well-studied topic in compilers for functional languages. This optimization interacts well with

control effects by iterated CPS. In fact, we can fully reduce Example 4.7 at compile time to its result

just by inlining and 𝛽-reduction. This is similar to what Schuster et al. [2020] propose, but our

source language and translation are more general.

Backtracking State via Backup/Restore. Another solution to the problem of correctly backtracking

mutable reference in the presence of control, is to store references on the runtime stack, backup-up

the current state during unwinding, and restore that state upon resumption [Brachthäuser et al.

2018, 2020b; Kiselyov et al. 2006]. In our translation, evidence has computational content. This

way, as an alternative implementation strategy, we can use global mutable references without any

special runtime support and still obtain the correct backtracking behavior. The idea is to push the

code that performs the backup and restore into the evidence. When we capture a continuation

across a mutable reference, the continuation closes over the state, which it restores on resumption.

Please consult the accompanying code for more details. This has advantages from a performance

perspective: code that does not capture the continuation only performs reads and writes on raw

references. At the same time, code that does capture the continuation has the correct backtracking

behavior. In the next section we will generalize this idea and present dynamic wind.

4.8 Dynamic Wind
Dynamic wind [Friedman and Haynes 1985] allows user definable actions to be performed every

time control effects are used to enter and leave a region. We have already seen the first half of

dynamic wind in Λ𝜌 [Fin], where we could install a cleanup action that is run when we unwind the

stack across it. Naturally, in our framework finalizers also interact well with effect handlers and can

be combined to obtain the language Λ𝜌 [Eff, Fin]. However, in face of resumable exceptions, such

as provided by effect handlers, it makes sense to extend our language with an additional construct

to install an action to run when we resume a captured continuation. Figure 15 extends Λ𝜌 with a

statement for dynamic wind (called Λ𝜌 [Eff, Fin, Dyn]). The action s is triggered, whenever the
control flow re-enters the region denoted by r .

Example 4.9. Let us look at a larger example in Figure 16, where we use dynamic wind to save

the state of an open file upon leaving a region and restore it when we re-enter it. We define a

function withFile that opens a file and passes a reference to the opened file to the given program

prog. We install an unwind handler that closes the file whenever control jumps across it, and a

rewind handler that reopens the file and seeks to the position where we left off whenever control

resumes. If the program prog uses a non-determinism effect, for example via handleForkList,
multiple forks will restart reading from the same file position.

This example does not define a safe API for file access because users of withFile have access to
the raw file handle. But with regions it is easily possible to define a safe API in terms of withFile.

21

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Extended Typing Rules:

Γ, r, l : r ⊑ 𝜌 r ⊢ s : 𝜏 Γ 𝜌 ⊢ s : ()
Γ 𝜌 ⊢ try { [r] (l) ⇒ s0 } rewind { s } : 𝜏

[Rewind]

Extended Translation Rules:

SJ try { [r] (l) ⇒ s0 } rewind { s } K𝜌 = (Λr ⇒ 𝜆l ⇒SJ s0 Kr) T J 𝜌 K (LiftDyn SJ s K𝜌)

Auxiliary Definitions:

LiftDyn f : ∀a. Cps R a → Cps R a
LiftDyn f = Λa ⇒ 𝜆m ⇒ 𝜆k ⇒ m (𝜆x ⇒ f (𝜆u ⇒ k x))

Fig. 15. Extension of Λ𝜌with dynamic wind (Λ𝜌 [Dyn]).

The translation in Figure 15 defines the semantics of the second half of dynamic wind in pure

System F. The evidence variable l is bound to a computation that pushes the rewinding statement

s onto the continuation. In general, evidence contains both rewinding and unwinding statements.

This can also be seen in Example 4.9. Here we pass the evidence l2 ⊕ l1, which contains the

unwind and rewind code, to prog.
While dynamic wind works for resources like files that are recoverable, if we want to combine

general control operators like effect handlers (Subsection 4.6) with arena allocation (Subsection 4.2),

our conceptual framework highlights a problem: When we deallocate the arena upon leaving the

region, there is no way we can recover it upon resumption. Region-based memory management

and multi-shot delimited control seem to be fundamentally incompatible. However, based on our

computational interpretation of evidence, we can offer safe behavior:

(1) When leaving a region, we can deallocate the arena. When we would re-enter the arena’s

region, we abort with an exception. Since we only throw an exception when we actually try

to resume into a region containing a deallocated arena, this makes region-based memory

management viable for many programs.

(2) When leaving a region, we can evacuate the arena to some garbage collected heap and, for

example, add a reference count, or switch to manual memory management. When we re-enter

the arena’s region, we re-install it from the heap.

Both of these are unsatisfactory for the special case of one-shot continuations. For these, better

approaches exist. We leave integrating these into our conceptual framework to future work.

As a final example, the next subsection illustrates the interaction between region-based memory

management and first-class coroutines.

4.9 Coroutines
To further investigate the combination of advanced control-flow mechanisms and region-based

memory management, we introduce first-class coroutines. Coroutines are suspended computations

that are either done or can be resumed to yield another coroutine [Moura and Ierusalimschy 2009;

Wang and Dahl 1971]. We can implement coroutines in terms of effect handlers, using a recursive

data type [Haynes et al. 1986].

data Coroutine r t = Done t | More (Cap r () (Coroutine r t))

The common implementation of coroutines as state machines [Bierman et al. 2012] arises from

defunctionalization [Danvy and Nielsen 2001] of the stored continuations. There are two interesting

kinds of interaction between region-based resource management and first-class coroutines.

22

All About That Stack Technical Report, 2021, University of Tübingen

def withFile[r0, t](

prog: [r](GlobalRef File, r ⊑ r0) →r t

) at r0 {

val fileRef = newGlobalRef(openFile("book.txt"));

val posnRef = newGlobalRef(0);

try { [r1](l1) ⇒
try { [r2](l2) ⇒

val result = prog[r2](fileRef, l2 ⊕ l1);

closeFile(getGlobalRef(fileRef));

return result

} rewind {

val file = openFile("book.txt");

setGlobalRef(fileRef, file);

seekFile(file, getGlobalRef(posnRef))

}

} unwind {

val file = getGlobalRef(fileRef);

setGlobalRef(posnRef, filePosn(file));

closeFile(file)

}

}

Fig. 16. Example program in Λ𝜌 [Eff, Fin, Dyn] using dynamic wind.

Example 4.10. First, consider what happens when we allocate a resource outside of the coroutine.
This example should not and does not typecheck.

arena { [r1](a1, l1) ⇒
val coroutine = try { [r2](yield, l2) ⇒

// use both the arena and the coroutine

do(yield, (), 0); alloc(a1, 99, l2); do(yield, (), 0)

return (Done(()))

} with { ((), resume) ⇒ return More(resume) };

return coroutine // does not typecheck

}

The coroutine uses arena a1. We can not return the coroutine, because it would leave the region

where it is safe to resume it.

Example 4.11. Second, consider what happens whenwe allocate a resource inside of the coroutine.
Let us assume the following example that defines a coroutine that yields twice.

val coroutine = try { [r1](yield, l1) ⇒
do(yield, (), 0);

arena { [r2](a2, l2) ⇒ do(yield, (), l2) }

return (Done(()))

} with { ((), resume) ⇒ return More(resume) };

23

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

The second yield is performed from within a fresh arena region r2. Having to use evidence l2
highlights that for the second yield, and only there, we have to evacuate the arena. Local allocation

of arenas are fine, as long as we do not yield out of them.

Again, since coroutines are often resumed exactly once, we would like to add special support for this

use case. We could for example require users to manually copy and free suspended coroutines, like

in Multicore OCaml [Dolan et al. 2014], which has discontinue and clone primitives for resumptions,

or in an extension of Koka [Leijen 2018], which requires manual finalization. Our region-based

type system rules out all unsafe combinations of coroutines with resources, while allowing for a

large number of safe uses.

4.10 Summary
In this section, we have extended our core language Λ𝜌 with numerous language features, such as

exceptions, local state, effect handlers, and dynamic wind. We uniformly presented the semantics

of those features as translations to pure System F, enabling a well-defined composition into larger

languages and allowing us to study interactions between the features.

5 RELATEDWORK
Out of the numerous works about regions for resource management, the one most closely related,

and indeed which has been the basis of our work, is [Kiselyov and Shan 2008], which in turn is

based on [Fluet and Morrisett 2004]. Kiselyov and Shan provide a library for region-based resource

management in Haskell. They also propose to use regions for resources other than memory,

introduce explicit subregioning witnesses, and properly handle builtin Haskell exceptions. They

demonstrate how types and regions are inferred, which we do not discuss. Their approach perfectly

fits into our conceptual framework, and allows us to extend their approach and discuss control

effects beyond handling of builtin exceptions.

The non-trivial operational interaction between operators for delimited control and dynamic

binding, or more general continuation marks, has been discussed before [Flatt and Dybvig 2020;

Flatt et al. 2007; Kiselyov et al. 2006]. Our conceptual framework supports these use cases and

cleanly connects the type level and the operational semantics.

Makholm [2000] and Phan et al. [2008] discuss region-based memory management in the logic

programming languages Prolog and Mercury respectively. Harris [2005] discuss the interaction

between exceptions and atomic blocks in software transactional memory in Java. It would be

interesting to see if the challenges that they address can be cast into our conceptual framework

and if we could reproduce their solutions.

Our treatment of effect handlers in Section 4.6 follows recent developments in type systems for

effect handlers [Biernacki et al. 2019b; Brachthäuser et al. 2020b; Zhang and Myers 2019; Zhang et al.

2020]. Our evidence terms are a generalization of the evidence vectors proposed by Xie et al. [2020]

and our formal treatment of the operational semantics is inspired by their concept of evidence

correspondence. They introduce the property of scoped resumptions and dynamically check that it

holds. We statically enforce this property.

Our CPS-based semantics of exceptions, our control operator, and effect handlers is closely related

to the one presented by Schuster et al. [2020]. However, they do not support effect-polymorphic

functions, which can be expressed within our framework. Our translation of effect handlers to

System F is similar to the one given in Appendix B of [Hillerström et al. 2017].

Kiselyov and Ishii [2015] present a Haskell library for effect handlers based on a variant of the

free monad in Haskell. Their library supports user-defined effects and handlers and they provide a

range of pre-defined effects like exceptions, non-determinism, and state. They also discuss a region

24

All About That Stack Technical Report, 2021, University of Tübingen

effect for safe and automatic allocation and disposal of resources, which works in the presence of

an exception effect. Other effects, like non-determinism, are explicitly ruled out by the type system

when they would be used across a region. The biggest difference to our work is that they reify the

structure of the program as a free monad and then write interpreters over this structure, whereas

we translate programs to iterated CPS. They understand regions as effects, we understand regions

as parts of the stack and, at least for the case of arenas with exceptions, we provide a proof of safety.

A more minor difference is that we pass arenas explicitly while they index nested regions by a

type-level natural number for disambiguation.

Leijen [2018] reports on an extension of the programming language Koka with support for

resources and finalization. This approach requires sophisticated modification of the language

runtime, whereas our approach can be explained as a translation to pure System F. They allow for

more complex finalization patterns, where users explicitly run the finalizers of a resumption. This

is to avoid running finalizers on linearly used resumptions.

Ahman and Bauer [2020] present another approach to resources in the presence of algebraic effects

and handlers: Runners. They guarantee that finalizers are run exactly once by requiring runners to

always resume exactly once. It is very useful to have this guarantee. If the only control effect are

exceptions, we offer the same guarantee, but we do not prove it. We go further and discuss arbitrary

control effects with arbitrary nesting where we cannot offer such a guarantee. We present an

operational semantics that relates resource management to the stack and a denotational semantics

that translates programs to iterated CPS. Their denotational semantics translates programs to

essentially a free monad.

6 CONCLUSION
We presented a unified treatment of region-based resource management and control effects in a

language with types and effects. It rests on the central idea that a region denotes a part of the

runtime stack. We have formalized the connection between type-level regions and the actual shape

of the runtime stack during evaluation. We have demonstrated that our conceptual framework

can incorporate a large number of different language features and discussed their non-trivial

interaction. All of these features are bound together by a translation to continuation-passing style

and a denotational interpretation of evidence as answer type coercions, which further emphasizes

the understanding of regions as a property of the runtime context.

However, there are a couple of remaining challenges that we leave to future work. The language

we presented cannot support more exotic uses of delimited control, like for example dynamically

overwriting an exception handler after capturing the continuation. This changes the region the next

statement runs in, so we need region modification which is exactly answer-type modification in our

CPS-based semantics. Moreover, while the interaction between finalizers and multiple invocations

of the current continuation is problematic, linear use of the continuation is unproblematic. Currently

we have no special provisions to incorporate this knowledge.

Our conceptual framework, which already supports many uses of delimited control, will form

the foundation upon which we will build these future investigations.

REFERENCES
Danel Ahman and Andrej Bauer. 2020. Runners in Action. In Programming Languages and Systems, Peter Müller (Ed.).

Springer International Publishing, Cham, 29–55.

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development, Coq’Art:The Calculus of
Inductive Constructions. Springer-Verlag.

Gavin Bierman, Claudio Russo, Geoffrey Mainland, Erik Meijer, and Mads Torgersen. 2012. Pause’n’Play: Formalizing

Asynchronous C#. In Proceedings of the European Conference on Object-Oriented Programming. Springer, Berlin, Heidelberg,
233–257.

25

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019a. Abstracting Algebraic Effects. Proc. ACM
Program. Lang. 3, POPL, Article 6 (Jan. 2019), 28 pages.

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019b. Binders by Day, Labels by Night: Effect

Instances via Lexically Scoped Handlers. Proc. ACM Program. Lang. 4, POPL, Article 48 (Dec. 2019), 29 pages. https:

//doi.org/10.1145/3371116

Jonathan Immanuel Brachthäuser and Philipp Schuster. 2017. Effekt: Extensible Algebraic Effects in Scala (Short Paper).

In Proceedings of the International Symposium on Scala (Vancouver, BC, Canada). ACM, New York, NY, USA. https:

//doi.org/10.1145/3136000.3136007

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2018. Effect Handlers for the Masses. Proc. ACM
Program. Lang. 2, OOPSLA, Article 111 (Oct. 2018), 27 pages. https://doi.org/10.1145/3276481

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020a. Effects as Capabilities: Effect Handlers

and Lightweight Effect Polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126 (Nov. 2020). https://doi.org/10.

1145/3428194

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020b. Effekt: Capability-Passing Style for Type-

and Effect-safe, Extensible Effect Handlers in Scala. Journal of Functional Programming (2020). https://doi.org/10.1017/

S0956796820000027

Edwin Brady. 2020. Idris 2: Quantitative Type Theory in Action. Technical Report. University of St Andrews, Scotland, UK.

https://www.type-driven.org.uk/edwinb/papers/idris2.pdf

Youyou Cong, Leo Osvald, Grégory M. Essertel, and Tiark Rompf. 2019. Compiling with Continuations, or Without?

Whatever. Proc. ACM Program. Lang. 3, ICFP, Article 79 (July 2019), 28 pages. https://doi.org/10.1145/3341643

Olivier Danvy. 2004. On Evaluation Contexts, Continuations, and the Rest of Computation. (02 2004).

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In Proceedings of the Conference on LISP and Functional
Programming (Nice, France). ACM, New York, NY, USA, 151–160.

Olivier Danvy and Lasse R. Nielsen. 2001. Defunctionalization at Work. In Proceedings of the Conference on Principles and
Practice of Declarative Programming (Florence, Italy). 162–174.

Stephen Dolan, Leo White, and Anil Madhavapeddy. 2014. Multicore OCaml. In OCaml Workshop.
R. Kent Dybvig, Simon L. Peyton Jones, and Amr Sabry. 2007. A monadic framework for delimited continuations. Journal of

Functional Programming 17, 6 (2007), 687–730.

Matthias Felleisen. 1988. The Theory and Practice of First-class Prompts. In Proceedings of the Symposium on Principles of
Programming Languages (San Diego, California, USA). ACM, New York, NY, USA, 180–190.

Matthew Flatt and R. Kent Dybvig. 2020. Compiler and Runtime Support for Continuation Marks. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020). Association
for Computing Machinery, New York, NY, USA, 45–58. https://doi.org/10.1145/3385412.3385981

Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen. 2007. Adding Delimited and Composable Control

to a Production Programming Environment. In Proceedings of the International Conference on Functional Programming
(Freiburg, Germany). Association for Computing Machinery, New York, NY, USA, 165–176. https://doi.org/10.1145/

1291151.1291178

Matthew Fluet and GregMorrisett. 2004. Monadic Regions. In Proceedings of the Ninth ACM SIGPLAN International Conference
on Functional Programming (Snow Bird, UT, USA) (ICFP ’04). Association for Computing Machinery, New York, NY, USA,

103–114. https://doi.org/10.1145/1016850.1016867

Daniel P. Friedman and Christopher T. Haynes. 1985. Constraining Control. In Proceedings of the Symposium on Principles of
Programming Languages (New Orleans, Louisiana, USA). ACM, 245–254.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney. 2002. Region-Based Memory

Management in Cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation (Berlin, Germany) (PLDI ’02). Association for Computing Machinery, New York, NY, USA, 282–293.

https://doi.org/10.1145/512529.512563

Tim Harris. 2005. Exceptions and side-effects in atomic blocks. Science of Computer Programming 58, 3 (2005), 325 – 343.

https://doi.org/10.1016/j.scico.2005.03.005 Special Issue on Concurrency and synchonization in Java programs.

Christopher T Haynes. 1987. Logic continuations. The Journal of Logic Programming 4, 2 (1987), 157–176.

Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. 1986. Obtaining coroutines from continuations. Computer
languages 11, 3-4 (1986), 143–153.

Robert Hieb and R. Kent Dybvig. 1990. Continuations and Concurrency. In Proceedings of the Second ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming (Seattle, Washington, USA) (PPOPP ’90). ACM, New York,

NY, USA, 128–136.

Daniel Hillerström, Sam Lindley, Bob Atkey, and KC Sivaramakrishnan. 2017. Continuation Passing Style for Effect Handlers.

In Formal Structures for Computation and Deduction (LIPIcs, Vol. 84). Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

26

https://doi.org/10.1145/3371116
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1145/3276481
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1017/S0956796820000027
https://doi.org/10.1017/S0956796820000027
https://www.type-driven.org.uk/edwinb/papers/idris2.pdf
https://doi.org/10.1145/3341643
https://doi.org/10.1145/3385412.3385981
https://doi.org/10.1145/1291151.1291178
https://doi.org/10.1145/1291151.1291178
https://doi.org/10.1145/1016850.1016867
https://doi.org/10.1145/512529.512563
https://doi.org/10.1016/j.scico.2005.03.005

All About That Stack Technical Report, 2021, University of Tübingen

R.John Muir Hughes. 1986. A novel representation of lists and its application to the function “reverse”. Inform. Process. Lett.
22, 3 (1986), 141–144. https://doi.org/10.1016/0020-0190(86)90059-1

Andrew Kennedy. 2007. Compiling with Continuations, Continued. In Proceedings of the International Conference on
Functional Programming (Freiburg, Germany). ACM, New York, NY, USA, 177–190.

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. In Proceedings of the Haskell Symposium
(Vancouver, BC, Canada). ACM, New York, NY, USA, 94–105.

Oleg Kiselyov and Chung-chieh Shan. 2008. Lightweight Monadic Regions. In Proceedings of the Haskell Symposium (Victoria,

BC, Canada) (Haskell ’08). ACM, New York, NY, USA.

Oleg Kiselyov, Chung-chieh Shan, and Amr Sabry. 2006. Delimited Dynamic Binding. In Proceedings of the International
Conference on Functional Programming (Portland, Oregon, USA). ACM, New York, NY, USA, 26–37.

John Launchbury and Simon L. Peyton Jones. 1994. Lazy Functional State Threads. In Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and Implementation (Orlando, Florida, USA) (PLDI ’94). Association for

Computing Machinery, New York, NY, USA, 24–35. https://doi.org/10.1145/178243.178246

Daan Leijen. 2017. Structured Asynchrony with Algebraic Effects. In Proceedings of the Workshop on Type-Driven Development
(Oxford, UK). ACM, New York, NY, USA, 16–29.

Daan Leijen. 2018. Algebraic Effect Handlers with Resources and Deep Finalization. Technical Report MSR-TR-2018-10.

Microsoft Research. 35 pages.

Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming languages.

Information and Computation 185, 2 (2003), 182–210.

Henning Makholm. 2000. A Region-Based Memory Manager for Prolog. In Proceedings of the 2nd International Symposium
on Memory Management (Minneapolis, Minnesota, USA) (ISMM ’00). Association for Computing Machinery, New York,

NY, USA, 25–34. https://doi.org/10.1145/362422.362434

Ana Lúcia De Moura and Roberto Ierusalimschy. 2009. Revisiting Coroutines. ACM Trans. Program. Lang. Syst. 31, 2, Article
6 (Feb. 2009), 31 pages.

Koen Pauwels, Tom Schrijvers, and Shin-Cheng Mu. 2019. Handling Local State with Global State. In Proceedings of
Mathematics of Program Construction (MPC). Springer.

Quan Phan, Zoltan Somogyi, and Gerda Janssens. 2008. Runtime Support for Region-Based Memory Management in

Mercury. In Proceedings of the 7th International Symposium on Memory Management (Tucson, AZ, USA) (ISMM ’08).
Association for Computing Machinery, New York, NY, USA, 61–70. https://doi.org/10.1145/1375634.1375644

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (2013).
John C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM

annual conference (Boston, Massachusetts, USA). ACM, New York, NY, USA, 717–740.

Philipp Schuster and Jonathan Immanuel Brachthäuser. 2018. Typing, Representing, and Abstracting Control. In Proceedings
of the Workshop on Type-Driven Development (St. Louis, Missouri, USA). ACM, New York, NY, USA, 14–24. https:

//doi.org/10.1145/3240719.3241788

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2020. Compiling Effect Handlers in Capability-

Passing Style. Proc. ACM Program. Lang. 4, ICFP, Article 93 (Aug. 2020), 28 pages. https://doi.org/10.1145/3408975

Dorai Sitaram and Matthias Felleisen. 1990. Control delimiters and their hierarchies. LISP and Symbolic Computation 3, 1

(01 Jan 1990), 67–99.

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2017. A Logical Relation for Monadic Encapsula-

tion of State: Proving Contextual Equivalences in the Presence of RunST. Proc. ACM Program. Lang. 2, POPL, Article 64
(Dec. 2017), 28 pages. https://doi.org/10.1145/3158152

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, and Peter Sestoft. 2001. Programming with Regions in the ML

Kit (for Version 4). (10 2001).

Mads Tofte and Jean-Pierre Talpin. 1994. Implementation of the Typed Call-by-Value 𝜆-Calculus Using a Stack of Regions.

In Proceedings of the Symposium on Principles of Programming Languages (Portland, Oregon, USA) (POPL ’94). ACM, New

York, NY, USA, 188–201. https://doi.org/10.1145/174675.177855

Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management. Inf. Comput. 132, 2 (Feb. 1997), 109–176.
https://doi.org/10.1006/inco.1996.2613

Arne Wang and O. Dahl. 1971. Coroutine sequencing in a block structured environment. BIT Numerical Mathematics 11
(1971), 425–449.

Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan Leijen. 2020. Effect

Handlers, Evidently. Proc. ACM Program. Lang. 4, ICFP, Article 99 (Aug. 2020), 29 pages. https://doi.org/10.1145/3408981

Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe Effect Handlers via Tunneling. Proc. ACM Program. Lang. 3,
POPL, Article 5 (Jan. 2019), 29 pages.

Yizhou Zhang, Guido Salvaneschi, Quinn Beightol, Barbara Liskov, and Andrew C. Myers. 2016. Accepting Blame for Safe

Tunneled Exceptions. In Proceedings of the Conference on Programming Language Design and Implementation (Santa

27

https://doi.org/10.1016/0020-0190(86)90059-1
https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/362422.362434
https://doi.org/10.1145/1375634.1375644
https://doi.org/10.1145/3240719.3241788
https://doi.org/10.1145/3240719.3241788
https://doi.org/10.1145/3408975
https://doi.org/10.1145/3158152
https://doi.org/10.1145/174675.177855
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1145/3408981

Technical Report, 2021, University of Tübingen Philipp Schuster, Jonathan Brachthäuser, and Klaus Ostermann

Barbara, CA, USA). ACM, New York, NY, USA, 281–295.

Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers. 2020. Handling Bidirectional Control Flow. Proc. ACM Program.
Lang. 4, OOPSLA, Article 139 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428207

28

https://doi.org/10.1145/3428207

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Contributions

	2 Main Ideas
	2.1 Arena-based Memory Management
	2.2 Exception Handling
	2.3 Combining Arenas and Exceptions
	2.4 Regions and Evidence

	3 A Calculus of Regions –
	3.1 Syntax
	3.2 Typing
	3.2.1 Typing of Statements
	3.2.2 Typing of Expressions
	3.2.3 Typing of Evidence

	3.3 Arenas
	3.3.1 Region Polymorphism and Subregioning Evidence

	3.4 Exceptions
	3.5 Operational Semantics
	3.5.1 Reduction Semantics

	3.6 Region- and Evidence Correspondence

	4 Combining Regions and Effects via Continuation-Passing Style
	4.1 Translation of the Base Language
	4.2 Arenas
	4.3 Exceptions
	4.4 Finalizers
	4.5 Control Operators
	4.6 Effect Handlers
	4.7 Local State
	4.8 Dynamic Wind
	4.9 Coroutines
	4.10 Summary

	5 Related Work
	6 Conclusion
	References

