Datatype-Generic Programming
with First-Class Regular Functors

(Finally some type system hacking, yeah!)

Cai Yufei, Paolo G. Giarrusso, Klaus Ostermann
University of Tubingen, Germany

Context

* Algorithms on complex data structures are
often repetitive and fragile

— They depend on details of the data structure that
are not relevant to the algorithm

— The same traversal/recursion scheme is repeated
in many algorithms

Example

data Term = Var String | Lam String Term
| App Term Term | Lit Int

rename :: Term -> (String -> String) -> Term

rename (Var x) f = Var (f x)

rename (Lam x t) f = Lam (f x) (rename t f)

rename (App t1 t2) f = App (rename t1 f) (rename t2 f)
rename (Lit n) f = Lit n

Algorithm is only interested in names but is coupled to the full structure of terms

Structural recursion on terms will be replicated in many algorithms

Datatype-Generic Programming

Hard to define precisely (but Gibbons tried)
Deals with “these problems”

Many previous approaches
— Bananas, Lenses & Barbed Wire, Origami
— PolyP, Generic Haskell

— Scrap Your Boilerplate, Strafunski

Ad-hoc vs. parametric datatype genericity

— We are shooting for parametric genericity

Our elevator pitch

Datatypes can be described via functors

Functors can

— Define recursion schemes

— Define a “view” on a data structure as a container

Main insight

— The same datatype can be defined in many different ways via
functors

— We can use functors as an extensible set of “views” on a
datatype

— These views can be used to decouple algorithms from the shape
and recursion structure of the data

Functors first!
— Datatypes derived from functors and not the other way around

We have implemented a Scala (macro) library, Creg, that
implements the idea

What is a functor?

* For the purpose of this talk a functor is a type
constructor F together with a “map” function
such that *blah™* (I’ll rather show the code)

trait Functor {
type Map[+X]
def fmapl[A,B](f: A => B) : Map[A] => Map|[B]
}
e Standard algebraic data types can be understood
as least fixed points of polynomial functors.
Example: Integer lists are the least FP of

F(X)=1+Int*X

What is a regular functor?

* Polynomial functors + a built-in fixed point
constructor

e E.g. List[X] = Fix(Z -> 1+X*Z)

* Datatypes are just fully applied regular
functors

Known properties of regular functors

* Can describe algebraic datatype
e Standard recursion schemes can be defined in

terms of fmap
— Catamorphisms (“folds”), Anamorphisms (“unfolds”),

def cata[T](F: Traversable)(f: F.Map[T] =>T): Fix[F.Map] =>T =
xs => f(F.fmap(cata(F)(f),xs.unroll))

 Can be used to derive a very generic traverse
function

def traverse[A, B](G: Applicative)(f: A => G.Map|[B]): Map[A] => Map[Map|[B]]

One datatype, multiple views

@functor def termF[term] = @functor def nameF[tau] = Fix(term =>
TermT { TermT {
Lit(value = Int) Lit(value = Int)
Var(name = String) Var(name = tau)
Abs(param = String, body = term) Abs(param = tau, body = term)
App(op = term, arg = term)} App(op = term, arg = term)}})

Term = Fix(termF) = nameF(String)

We can choose the functor (and hence structure & recursion schemes) that is
best for the algorithm at hand!

One datatype, multiple views

@functor def termF[term] = @functor def nameF[tau] = Fix(term =>
TermT { TermT {
Lit(value = Int) Lit(value = Int)
Var(name = String) Var(name = tau)
Abs(param = String, body = term) Abs(param = tau, body = term)
App(op = term, arg = term)} App(op = term, arg = term)}))
/Abs\ X
f /App\ f /
App App
7/ \ /N
Var App Var Lit
/ / N\ | |
f Var Lit h 3 ¥ I
| |
g 2 g

We can choose the functor (and hence structure & recursion schemes) that is
best for the algorithm at hand!

One datatype, multiple views

/' @functor def nameF[tau] = Fix(term =>
TermT {

Lit(value = Int)

Var(name = tau)

Abs(param = tau, body = term)
App(op = term, arg = term)}))

def rename(t: Term, f: String => String): Term = nameF.fmap[String,String](t,f)

Algorithm decoupled from structure of terms

Using derived recursion schemes and
generic traversals

Derived from fmap and termF

def count(t : Term)= caia[lnt](t) {
case Lit(n) =>1
case other =>termF(other).reduce(0, +)

)

Derived from traverse

Such generic traversals are not new.
But more flexibility:
generic traversals, catamorphisms etc. are now available for every functor!

One datatype, multiple recursion
schemes

@functor def opF[t] = TermT {
Lit(value = Int)
Var(param = String)
Abs(param = String, body = Term)
App(op =t, arg = Term)

}

Recurse only into operator position!

def getOperator(t: Term): Term =

cata(opF)({
case App(op, arg) =>op Find left-most operator (*)
case operator => operator

H(t)

(*) this code is a (small) lie due to our iso-recursive encoding of datatypes

Alas...

Term = Fix(termF) = termF(Fix(termF)) = nameF[String] = Fix(opF)

ONEDOES NQT olM # |

o
GET EQUALITY OF REGULAR ﬂlucmn
.., APPLICATIONS IN SCALA!

How it works (1/3)

@structure def TermT = {
Lit(value) ;
Var(name) ;
Abs(param, body) ;

App(op, arg) }

Declaration of nominal products
and sums

Declared separately to ensure
interoperability of functors

sealed trait TermT[L, V, Ab, Ap]

case class Lit[l](value: 1)
extends TermT[Lit[I], L, L, L]

case class Var[S](name: S)
extends TermT[L, Var[S], L, L]

case class Abs[S, T](param: S, body: T)
extends TermT[L, L, Abs[S, T], L]

case class App[T1, T2](op: T1, arg: T2]
extends TermT[L, L, L, App[T1, T2]]

How it works (2/3)

@functor def termF[term] =
TermT {
Lit(value = Int)
Var(name = String)
Abs(param = String, body = term)
App(op = term, arg = term)}

@data Term = Fix(termF)

Example:

val termF = new Traversable {
type Map[+T] =
TermT[Lit[Int],

Var[String],
Abs[String, T],
ApplT, T]]

def traverse ...

def fmap ...

def apply[T](x: Map[T]) ...

}

type Term = Fix[termF.Map]

sealed trait Fix[+F[+_]] { library
def unroll: F[Fix[F]] } code

Lit(5) : TermT[Lit[Int], L, L, L] <:termF.Map[Term]

new Fix[termF.Map]{ def unroll = Lit(5) } : Term

How it works (3/3)

@functor def nameF[tau] = Fix(term =>
TermT {
Lit(value = Int)
Var(name = tau)
Abs(param = tau, body = term)
App(op = term, arg = term)
})

valtl: Term=...
val t2 : nameF.Map[String] = t1

val nameF = new Traversable {

type Map[+tau] =

Fix[F[tau]#A]
private[this] type F[+tau]

= {type A[+T] = TermT]

Lit[Int], Var[tau], Abs[tau, T], AppI[T, T]1}

def traverse ...
def fmap ...

}

Isomorphisms across recursion
schemes

@functor def opF[t] = TermT {
Lit(value = Int)
Var(param = String)
Abs(param = String, body = Term)
App(op =t, arg = Term)

}

valtl: Term=..
val t2 : Fix[opF.Map] = coerce(t1)

val opF = new Traversable {
type Map[+T] = TermT]
Lit[Int], Var[String],
Abs[String, Term],
App[T, Term]]}
def traverse ...
def fmap ...

}

Related Work: Generic Haskell

(and PolyP is similar)

type Encode{ x]} t =1t — [Bool]
type Encode{k — I} t =Va. FEncode{k]} a — Encode{l]} (t a)

encode{t :: k[} ;. Encode{k]} t
encode{ Char|} ¢ = encodeChar c
encode{ Int[} n = encodelnt n
encode{ Unit|} unit =[]

encoded+:[} ena enb (Inl a) = False: ena a
encoded+[} ena enb (Inr b) = True: enb b
encode{:x:[} ena enb (a :x: b) = ena a H enb b

We cannot (easily) define polytypic functions because we use nominal
sums and products. Also, we cannot pattern-match on the structure of
types (parametric vs. ad-hoc datatype genericity)

Functors are derived from datatypes and not the other way around

Related Work: Scrap Your Boilerplate

Provides functions like:

gmapQ: Va.Dataa= (Vb.Datab=b—>c)>a—->|[c].

Can generically define operations on all
occurences of a type in an ADT

Using Scala’s TypeTags, we can encode gfoldl and
friends

We can be more fine-grained than SYB

— Not all occurences of a type are necessarily treated
the same

More related work

e Can encode Origami [Gibbons]

 Can encode compos [Bringert & Ranta]
 There’s tons of additional related work...

Questions?

