Datatype-Generic Programming with First-Class Regular Functors

(Finally some type system hacking, yeah!)

Cai Yufei, Paolo G. Giarrusso, Klaus Ostermann University of Tübingen, Germany

Context

- Algorithms on complex data structures are often repetitive and fragile
 - They depend on details of the data structure that are not relevant to the algorithm
 - The same traversal/recursion scheme is repeated in many algorithms

Example

```
data Term = Var String | Lam String Term | App Term Term | Lit Int

rename :: Term -> (String -> String) -> Term
rename (Var x) f = Var (f x)
rename (Lam x t) f = Lam (f x) (rename t f)
rename (App t1 t2) f = App (rename t1 f) (rename t2 f)
rename (Lit n) f = Lit n
```

Algorithm is only interested in names but is coupled to the full structure of terms

Structural recursion on terms will be replicated in many algorithms

Datatype-Generic Programming

- Hard to define precisely (but Gibbons tried)
- Deals with "these problems"
- Many previous approaches
 - Bananas, Lenses & Barbed Wire, Origami
 - PolyP, Generic Haskell
 - Scrap Your Boilerplate, Strafunski
- Ad-hoc vs. parametric datatype genericity
 - We are shooting for parametric genericity

Our elevator pitch

- Datatypes can be described via functors
- Functors can
 - Define recursion schemes
 - Define a "view" on a data structure as a container
- Main insight
 - The same datatype can be defined in many different ways via functors
 - We can use functors as an extensible set of "views" on a datatype
 - These views can be used to decouple algorithms from the shape and recursion structure of the data
- Functors first!
 - Datatypes derived from functors and not the other way around
- We have implemented a Scala (macro) library, Creg, that implements the idea

What is a functor?

 For the purpose of this talk a functor is a type constructor F together with a "map" function such that *blah* (I'll rather show the code)

```
trait Functor {
  type Map[+X]
  def fmap[A,B](f: A => B) : Map[A] => Map[B]
}
```

 Standard algebraic data types can be understood as least fixed points of polynomial functors.

Example: Integer lists are the least FP of

$$F(X) = 1 + Int * X$$

What is a regular functor?

- Polynomial functors + a built-in fixed point constructor
- E.g. List[X] = Fix(Z -> 1 + X*Z)
- Datatypes are just fully applied regular functors

Known properties of regular functors

- Can describe algebraic datatype
- Standard recursion schemes can be defined in terms of fmap
 - Catamorphisms ("folds"), Anamorphisms ("unfolds"),
 ...

```
def cata[T](F: Traversable)(f: F.Map[T] => T): Fix[F.Map] => T =
    xs => f( F.fmap(cata(F)(f),xs.unroll))
```

Can be used to derive a very generic traverse function

def traverse[A, B](G: Applicative)(f: A => G.Map[B]): Map[A] => Map[Map[B]]

One datatype, multiple views

```
@functor def termF[term] =
  TermT {
    Lit(value = Int)
    Var(name = String)
    Abs(param = String, body = term)
    App(op = term, arg = term)}
```

```
@functor def nameF[tau] = Fix(term =>
TermT {
    Lit(value = Int)
    Var(name = tau)
    Abs(param = tau, body = term)
    App(op = term, arg = term)}})
```

Term = Fix(termF) = nameF(String)

We can choose the functor (and hence structure & recursion schemes) that is best for the algorithm at hand!

One datatype, multiple views

```
@functor def termF[term] =
  TermT {
    Lit(value = Int)
    Var(name = String)
    Abs(param = String, body = term)
    App(op = term, arg = term)}
```

```
@functor def nameF[tau] = Fix(term =>
  TermT {
    Lit(value = Int)
    Var(name = tau)
    Abs(param = tau, body = term)
    App(op = term, arg = term)}))
```


We can choose the functor (and hence structure & recursion schemes) that is best for the algorithm at hand!

One datatype, multiple views

def rename(t: Term, f: String => String): Term = nameF.fmap[String,String](t,f)

Algorithm decoupled from structure of terms

Using derived recursion schemes and generic traversals

Derived from fmap and termF

```
def count(t : Term)= cata[Int](t) {
  case Lit(n) => 1
  case other => termF(other).reduce(0, _ + _)
}
```

Derived from traverse

Such generic traversals are not new.
But more flexibility:
generic traversals, catamorphisms etc. are now available for every functor!

One datatype, multiple recursion schemes

```
@functor def opF[t] = TermT {
  Lit(value = Int)
  Var(param = String)
  Abs(param = String, body = Term)
  App(op = t, arg = Term)
}
```

Recurse only into operator position!

```
def getOperator(t: Term): Term =
  cata(opF)({
    case App(op, arg) => op
    case operator => operator
  })(t)
```

Find left-most operator (*)

(*) this code is a (small) lie due to our iso-recursive encoding of datatypes

Alas...

Term = Fix(termF) = termF(Fix(termF)) = nameF[String] = Fix(opF)

How it works (1/3)

```
@structure def TermT = {
  Lit(value);
  Var(name);
  Abs(param, body);
  App(op, arg) }
```


Declaration of nominal products and sums

Declared separately to ensure interoperability of functors

```
sealed trait TermT[L, V, Ab, Ap]
case class Lit[I](value: I)
 extends TermT[Lit[I], \bot, \bot, \bot]
case class Var[S](name: S)
 extends TermT[\bot, Var[S], \bot, \bot]
case class Abs[S, T](param: S, body: T)
 extends TermT[\bot, \bot, Abs[S, T], \bot]
case class App[T1, T2](op: T1, arg: T2]
 extends TermT[\perp, \perp, \perp, App[T1, T2]]
```

How it works (2/3)

Functors are values!

```
@functor def termF[term] =
  TermT {
    Lit(value = Int)
    Var(name = String)
    Abs(param = String, body = term)
    App(op = term, arg = term)}
```



```
val termF = new Traversable {
  type Map[+T] =
    TermT[Lit[Int],
        Var[String],
        Abs[String, T],
        App[T, T]]
  def traverse ...
  def fmap ...
  def apply[T](x: Map[T]) ...
}
```

@data Term = Fix(termF)

type Term = Fix[termF.Map]

```
sealed trait Fix[+F[+_]] {
  def unroll: F[Fix[F]] }
```

library code

Example:

Lit(5) : TermT[Lit[Int], \bot , \bot , \bot] <: termF.Map[Term] new Fix[termF.Map]{ def unroll = Lit(5) } : Term

iso-recursive types ⊗

How it works (3/3)

```
@functor def nameF[tau] = Fix(term =>
TermT {
  Lit(value = Int)
  Var(name = tau)
  Abs(param = tau, body = term)
  App(op = term, arg = term)
})
```



```
val nameF = new Traversable {
  type Map[+tau] =
    Fix[F[tau]#λ]
  private[this] type F[+tau]
  = { type λ[+T] = TermT[
      Lit[Int], Var[tau], Abs[tau, T], App[T, T]]}
  def traverse ...
  def fmap ...
}
```

```
val t1 : Term = ...
val t2 : nameF.Map[String] = t1
```

Isomorphisms across recursion schemes

```
@functor def opF[t] = TermT {
  Lit(value = Int)
  Var(param = String)
  Abs(param = String, body = Term)
  App(op = t, arg = Term)
}
```

```
val opF = new Traversable {
  type Map[+T] = TermT[
    Lit[Int], Var[String],
    Abs[String, Term],
    App[T, Term]]}
  def traverse ...
  def fmap ...
}
```

```
val t1 : Term = ...
val t2 : Fix[opF.Map] = coerce(t1)
```


Magic involving roll/unroll of the respective Fix applications

Related Work: Generic Haskell

(and PolyP is similar)

```
type Encode\{[*]\} t = t \rightarrow [Bool]

type Encode\{[k \rightarrow l]\} t = \forall a. Encode\{[k]\} a \rightarrow Encode\{[l]\} (t \ a)

encode\{[t :: k]\} :: Encode\{[k]\} t

encode\{[Char]\} c = encodeChar c

encode\{[Int]\} n = encodeInt n

encode\{[Unit]\} unit = []

encode\{[:+:]\} ena enb (Inl a) = False : ena a

encode\{[:+:]\} ena enb (Inr b) = True : enb b

encode\{[::+:]\} ena enb (a ::+: b) = ena a a a a
```

We cannot (easily) define polytypic functions because we use nominal sums and products. Also, we cannot pattern-match on the structure of types (parametric vs. ad-hoc datatype genericity)

Functors are derived from datatypes and not the other way around

Related Work: Scrap Your Boilerplate

Provides functions like:

```
gmapQ :: \forall a . Data a \Rightarrow (\forall b . Data b \Rightarrow b \rightarrow c) \rightarrow a \rightarrow [c].
```

- Can generically define operations on all occurences of a type in an ADT
- Using Scala's TypeTags, we can encode gfoldl and friends
- We can be more fine-grained than SYB
 - Not all occurences of a type are necessarily treated the same

More related work

- Can encode Origami [Gibbons]
- Can encode compos [Bringert & Ranta]
- There's tons of additional related work...

Questions?