
Programming Languages and Types

Klaus Ostermann

based on slides by Benjamin C. Pierce

The Lambda Calculus, formal

The lambda-calculus

I We have already studied the lambda calculus and some of its
variants in the first part of the course.

I FAE is the lambda calculus plus a little bit of arithmetic.

I We can get rid of the arithmetic without loosing anything
“essential”.

I What this means is that other programming constructs can be
encoded in the LC.

Formalities

Syntax

t ::= terms
x variable
λx.t abstraction
t t application

Terminology:

I terms in the pure λ-calculus are often called λ-terms

I terms of the form λx. t are called λ-abstractions or just
abstractions

Syntactic conventions

Since λ-calculus provides only one-argument functions, all
multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to
read and write:

I Application associates to the left

E.g., t u v means (t u) v, not t (u v)

I Bodies of λ- abstractions extend as far to the right as possible

E.g., λx. λy. x y means λx. (λy. x y), not
λx. (λy. x) y

Values

v ::= values
λx.t abstraction value

Operational Semantics

Computation rule:

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

Notation: [x 7→ v2]t12 is “the term that results from
substituting free occurrences of x in t12 with v12.”

Congruence rules:

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-App2)

Terminology

A term of the form (λx.t) v — that is, a λ-abstraction applied
to a value — is called a redex (short for “reducible expression”).

Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure,
call-by-value lambda-calculus.

Other evaluation strategies (call by name etc.) can be defined by
changing the congruence rules accordingly.

In contrast to the substitution-based interpreter, we can also define
full (non-deterministic) beta-reduction in SOS.

Programming in the
Lambda-Calculus

Multiple arguments by Currying

Consider the function double, which returns a function as an
argument.

double = λf. λy. f (f y)

This idiom — a λ-abstraction that does nothing but immediately
yield another abstraction — is very common in the λ-calculus.

In general, λx. λy. t is a function that, given a value v for x,
yields a function that, given a value u for y, yields t with v in
place of x and u in place of y.

That is, λx. λy. t is a two-argument function.

The “Church Booleans”

tru = λt. λf. t

fls = λt. λf. f

tru v w

= (λt.λf.t) v w by definition
−→ (λf. v) w reducing the underlined redex
−→ v reducing the underlined redex

fls v w

= (λt.λf.f) v w by definition
−→ (λf. f) w reducing the underlined redex
−→ w reducing the underlined redex

Functions on Booleans

not = λb. b fls tru

That is, not is a function that, given a boolean value v, returns
fls if v is tru and tru if v is fls.

Functions on Booleans

and = λb. λc. b c fls

That is, and is a function that, given two boolean values v and w,
returns w if v is tru and fls if v is fls

Thus and v w yields tru if both v and w are tru and fls if either
v or w is fls.

Pairs

pair = λf.λs.λb. b f s

fst = λp. p tru

snd = λp. p fls

That is, pair v w is a function that, when applied to a boolean
value b, applies b to v and w.
By the definition of booleans, this application yields v if b is tru

and w if b is fls, so the first and second projection functions fst

and snd can be implemented simply by supplying the appropriate
boolean.

Example

fst (pair v w)

= fst ((λf. λs. λb. b f s) v w) by definition
−→ fst ((λs. λb. b v s) w) reducing
−→ fst (λb. b v w) reducing
= (λp. p tru) (λb. b v w) by definition

−→ (λb. b v w) tru reducing
−→ tru v w reducing
−→∗ v as before.

Church numerals

Idea: represent the number n by a function that “repeats some
action n times.”

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

That is, each number n is represented by a term cn that takes two
arguments, s and z (for “successor” and “zero”), and applies s, n
times, to z.

Functions on Church Numerals

Successor:

scc = λn. λs. λz. s (n s z)

Addition:

plus = λm. λn. λs. λz. m s (n s z)

Multiplication:

times = λm. λn. m (plus n) c0

Zero test:

iszro = λm. m (λx. fls) tru

Predecessor is more difficult, but possible. I’ll spare you the details.

Normal forms

Recall:

I A normal form is a term that cannot take an evaluation step.

I A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?

Does every term evaluate to a normal form?

Recursion and Divergence

Y = λf. (λx. f x x) (λx. f x x)

Z = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

We have already seen fixed point combinators at work.

Y works in a call-by-name setting; Z also works with call-by-value.

Can be used to write divergent terms, such as Y λx.x.

Induction on Derivations

Two induction principles

Like before, we have two ways to prove that properties are true of
the untyped lambda calculus.

I Structural induction on terms

I Induction on a derivation of t −→ t′.

Let’s look at an example of each.

Structural induction on terms

To show that a property P holds for all lambda-terms t, it suffices
to show that

I P holds when t is a variable;

I P holds when t is a lambda-abstraction λx. t1, assuming
that P holds for the immediate subterm t1; and

I P holds when t is an application t1 t2, assuming that P
holds for the immediate subterms t1 and t2.

N.b.: The variant of this principle where “immediate subterm” is
replaced by “arbitrary subterm” is also valid. (Cf. ordinary
induction vs. complete induction on the natural numbers.)

An example of structural induction on terms

Define the set of free variables in a lambda-term as follows:

FV (x) = {x}
FV (λx.t1) = FV (t1) \ {x}
FV (t1 t2) = FV (t1) ∪ FV (t2)

Define the size of a lambda-term as follows:

size(x) = 1
size(λx.t1) = size(t1) + 1
size(t1 t2) = size(t1) + size(t2) + 1

Theorem: |FV (t)| ≤ size(t).

An example of structural induction on terms

Theorem: |FV (t)| ≤ size(t).

Proof: By induction on the structure of t.

I If t is a variable, then |FV (t)| = 1 = size(t).

I If t is an abstraction λx. t1, then
|FV (t)|

= |FV (t1) \ {x}| by defn
≤ |FV (t1)| by arithmetic
≤ size(t1) by induction hypothesis
≤ size(t1) + 1 by arithmetic
= size(t) by defn.

An example of structural induction on terms

Theorem: |FV (t)| ≤ size(t).

Proof: By induction on the structure of t.

I If t is an application t1 t2, then
|FV (t)|

= |FV (t1) ∪ FV (t2)| by defn
≤ |FV (t1)|+ |FV (t2)| by arithmetic
≤ |size(t1)|+ |size(t2)| by IH
≤ |size(t1)|+ |size(t2)|+ 1 by arithmetic
= size(t) by defn.

Induction on derivations

Recall that the reduction relation is defined as the smallest binary
relation on terms satisfying the following rules:

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-App2)

Induction on derivations

Induction principle for the small-step evaluation relation.

To show that a property P holds for all derivations of t −→ t′, it
suffices to show that

I P holds for all derivations that use the rule E-AppAbs;

I P holds for all derivations that end with a use of E-App1
assuming that P holds for all subderivations; and

I P holds for all derivations that end with a use of E-App2
assuming that P holds for all subderivations.

Example

Theorem: if t −→ t′ then FV (t) ⊇ FV (t′).

Induction on derivations

We must prove, for all derivations of t −→ t′, that
FV (t) ⊇ FV (t′).

There are three cases.

I If the derivation of t −→ t′ is just a use of E-AppAbs, then t

is (λx.t1)v and t′ is [x|→v]t1. Reason as follows:

FV (t) = FV ((λx.t1)v)
= FV (t1)/{x} ∪ FV (v)
⊇ FV ([x|→v]t1)
= FV (t′)

I If the derivation ends with a use of E-App1, then t has the
form t1 t2 and t′ has the form t′1 t2, and we have a
subderivation of t1 −→ t′1

By the induction hypothesis, FV (t1) ⊇ FV (t′1). Now
calculate:

FV (t) = FV (t1 t2)
= FV (t1) ∪ FV (t2)
⊇ FV (t′1) ∪ FV (t2)
= FV (t′1 t2)
= FV (t ′)

I If the derivation ends with a use of E-App2, the argument is
similar to the previous case.

Substitution and α-Equivalence

Substitution

Our definition of evaluation is based on the “substitution” of
values for free variables within terms.

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

But what is substitution, exactly? How do we define it?

Answer: It’s almost how we defined substitution for FAE and
related languages.

One glitch: Substitution of a variable with terms with free
variables.

Substitution as defined for FAE et al

[x 7→ s]x = s

[x 7→ s]y = y if x 6= y

[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y

[x 7→ s](λx.t1) = λx. t1
[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

It suffers from variable capture!

[x 7→ y](λy.x) = λx. x

Only a problem if terms with free variables can occur.

Trying to fix substitution...

[x 7→ s]x = s

[x 7→ s]y = y if x 6= y

[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y, y 6∈ FV (s)
[x 7→ s](λx.t1) = λx. t1
[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

Now substition is a partial function!

E.g., [x 7→ y](λy.x) is undefined.

But we want an result for every substitution.

Bound variable names shouldn’t matter

It’s annoying that that the “spelling” of bound variable names is
causing trouble with our definition of substitution.

Intuition tells us that there shouldn’t be a difference between the
functions λx.x and λy.y. Both of these functions do exactly the
same thing.

Because they differ only in the names of their bound variables,
we’d like to think that these are the same function.

We call such terms alpha-equivalent.

Alpha-equivalence classes

In fact, we can create equivalence classes of terms that differ only
in the names of bound variables.

When working with the lambda calculus, it is convenient to think
about these equivalence classes, instead of raw terms.

For example, when we write λx.x we mean not just this term, but
the class of terms that includes λy.y and λz.z.

We can now freely choose a different representative from a term’s
alpha-equivalence class, whenever we need to, to avoid getting
stuck.

Substitution, for alpha-equivalence classes

Now consider substitution as an operation over alpha-equivalence
classes of terms.

[x 7→ s]x = s

[x 7→ s]y = y if x 6= y

[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y, y 6∈ FV (s)
[x 7→ s](λx.t1) = λx. t1
[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

Examples:

I [x 7→ y](λy.x) must give the same result as [x 7→ y](λz.x).
We know the latter is λz.y, so that is what we will use for
the former.

I [x 7→ y](λx.z) must give the same result as [x 7→ y](λw.z).
We know the latter is λw.z so that is what we use for the
former.

Types

Plan

I For now, we’ll go back to the simple language of arithmetic
and boolean expressions and show how to equip it with a
(very simple) type system

I The key property of this type system will be soundness:
Well-typed programs do not get stuck

I After that, we’ll develop a simple type system for the
lambda-calculus

I We’ll spend a good part of the rest of the semester adding
features to this type system

Outline

1. begin with a set of terms, a set of values, and an evaluation
relation

2. define a set of types classifying values according to their
“shapes”

3. define a typing relation t : T that classifies terms according
to the shape of the values that result from evaluating them

4. check that the typing relation is sound in the sense that,

4.1 if t : T and t −→∗ v, then v : T

4.2 if t : T, then evaluation of t will not get stuck

Review: Arithmetic Expressions – Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

Evaluation Rules

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′1

if t1 then t2 else t3 −→ if t′1 then t2 else t3
(E-If)

t1 −→ t′1

succ t1 −→ succ t′1
(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′1

pred t1 −→ pred t′1
(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t′1

iszero t1 −→ iszero t′1
(E-IsZero)

Types

In this language, values have two possible “shapes”: they are
either booleans or numbers.

T ::= types
Bool type of booleans
Nat type of numbers

Typing Rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)

Typing Derivations

Every pair (t, T) in the typing relation can be justified by a
derivation tree built from instances of the inference rules.

T-Zero
0 : Nat

T-IsZero
iszero 0 : Bool

T-Zero
0 : Nat

T-Zero
0 : Nat

T-Pred
pred 0 : Nat

T-If
if iszero 0 then 0 else pred 0 : Nat

Proofs of properties about the typing relation often proceed by
induction on typing derivations.

Imprecision of Typing

Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)
approximation.

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

Using this rule, we cannot assign a type to

if true then 0 else false

even though this term will certainly evaluate to a number.

Properties of the Typing
Relation

Type Safety

The safety (or soundness) of this type system can be expressed by
two properties:

1. Progress: A well-typed term is not stuck

If t : T, then either t is a value or else t −→ t′ for
some t′.

2. Preservation: Types are preserved by one-step evaluation

If t : T and t −→ t′, then t′ : T.

Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...

Typechecking Algorithm

typeof(t) = if t = true then Bool

else if t = false then Bool

else if t = if t1 then t2 else t3 then

let T1 = typeof(t1) in

let T2 = typeof(t2) in

let T3 = typeof(t3) in

if T1 = Bool and T2=T3 then T2

else "not typable"

else if t = 0 then Nat

else if t = succ t1 then

let T1 = typeof(t1) in

if T1 = Nat then Nat else "not typable"

else if t = pred t1 then

let T1 = typeof(t1) in

if T1 = Nat then Nat else "not typable"

else if t = iszero t1 then

let T1 = typeof(t1) in

if T1 = Nat then Bool else "not typable"

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof:
By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3
t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The cases for rules T-Zero, T-Succ, T-Pred, and T-IsZero
are similar.

(Recommended: Try to reconstruct them.)

Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-True: t = true T = Bool

Then t is a value, so it cannot be that t −→ t′ for any t′, and the
theorem is vacuously true.

Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t′ can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t′ can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Subcase E-IfTrue: t1 = true t′ = t2

Immediate, by the assumption t2 : T.

(E-IfFalse subcase: Similar.)

Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t′ can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Subcase E-If: t1 −→ t′1 t′ = if t′1 then t2 else t3

Applying the IH to the subderivation of t1 : Bool yields
t′1 : Bool. Combining this with the assumptions that t2 : T and
t3 : T, we can apply rule T-If to conclude that
if t′1 then t2 else t3 : T, that is, t′ : T.

The Simply Typed
Lambda-Calculus

The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or λ→ for short.

Unlike the untyped lambda-calculus, the “pure” form of λ→ (with
no primitive values or operations) is not very interesting; to talk
about λ→, we always begin with some set of “base types.”

I So, strictly speaking, there are many variants of λ→,
depending on the choice of base types.

I For now, we’ll work with a variant constructed over the
booleans.

Untyped lambda-calculus with booleans

t ::= terms
x variable
λx.t abstraction
t t application
true constant true
false constant false
if t then t else t conditional

v ::= values
λx.t abstraction value
true true value
false false value

“Simple Types”

T ::= types
Bool type of booleans
T→T types of functions

Type Annotations

We now have a choice to make. Do we...

I annotate lambda-abstractions with the expected type of the
argument

λx:T1. t2

(as in most mainstream programming languages), or

I continue to write lambda-abstractions as before

λx. t2

and ask the typing rules to “guess” an appropriate annotation
(as in OCaml)?

Both are reasonable choices, but the first makes the job of defining
the typin rules simpler. Let’s take this choice for now.

Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12
(T-App)

Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

???

λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12
(T-App)

Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

Γ, x:T1 `t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12
(T-App)

Typing rules

Γ `true : Bool (T-True)

Γ `false : Bool (T-False)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-If)

Γ, x:T1 `t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12
(T-App)

Typing Derivations

What derivations justify the following typing statements?

I ` (λx:Bool.x) true : Bool

I f:Bool→Bool ` f (if false then true else false) :
Bool

I f:Bool→Bool `
λx:Bool. f (if x then false else x) : Bool→Bool

Properties of λ→

The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck

If ` t : T, then either t is a value or else t −→ t′

for some t′.

2. Preservation: Types are preserved by one-step evaluation

If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proving progress

Same steps as before...

I inversion lemma for typing relation

I canonical forms lemma

I progress theorem

Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.

Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12
Γ `t2 : T11
T = T12

Show Γ ` t′ : T12
By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2
t′ = [x 7→ v2]t12

Uh oh.

The “Substitution Lemma”

Lemma: Types are preserved under substitition.

That is, if Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: ...

Preservation

Recommended: Complete the proof of preservation

Base types

Up to now, we’ve formulated “base types” (e.g. Nat) by adding
them to the syntax of types, extending the syntax of terms with
associated constants (zero) and operators (succ, etc.) and
adding appropriate typing and evaluation rules. We can do this for
as many base types as we like.

For more theoretical discussions (as opposed to programming) we
can often ignore the term-level inhabitants of base types, and just
treat these types as uninterpreted constants.
E.g., suppose B and C are some base types. Then we can ask
(without knowing anything more about B or C) whether there are
any types S and T such that the term

(λf:S. λg:T. f g) (λx:B. x)

is well typed.

The Unit type

t ::= ... terms
unit constant unit

v ::= ... values
unit constant unit

T ::= ... types
Unit unit type

New typing rules Γ ` t : T

Γ ` unit : Unit (T-Unit)

Sequencing

t ::= ... terms
t1;t2

t1 −→ t′1
t1;t2 −→ t′1;t2

(E-Seq)

unit;t2 −→ t2 (E-SeqNext)

Γ ` t1 : Unit Γ ` t2 : T2

Γ ` t1;t2 : T2
(T-Seq)

Sequencing

t ::= ... terms
t1;t2

t1 −→ t′1
t1;t2 −→ t′1;t2

(E-Seq)

unit;t2 −→ t2 (E-SeqNext)

Γ ` t1 : Unit Γ ` t2 : T2

Γ ` t1;t2 : T2
(T-Seq)

Derived forms

I Syntatic sugar

I Internal language vs. external (surface) language

Sequencing as a derived form

t1;t2
def
= (λx:Unit.t2) t1

where x /∈ FV(t2)

Ascription

New syntactic forms

t ::= ... terms
t as T ascription

New evaluation rules t −→ t′

v1 as T −→ v1 (E-Ascribe)

t1 −→ t′1
t1 as T −→ t′1 as T

(E-Ascribe1)

New typing rules Γ ` t : T

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

Ascription as a derived form

t as T
def
= (λx:T. x) t

Let-bindings

New syntactic forms

t ::= ... terms
let x=t in t let binding

New evaluation rules t −→ t′

let x=v1 in t2 −→ [x 7→ v1]t2 (E-LetV)

t1 −→ t′1
let x=t1 in t2 −→ let x=t′1 in t2

(E-Let)

New typing rules Γ ` t : T

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2
(T-Let)

Pairs, tuples, and records

Pairs

t ::= ... terms
{t,t} pair
t.1 first projection
t.2 second projection

v ::= ... values
{v,v} pair value

T ::= ... types
T1× T2 product type

Evaluation rules for pairs

{v1,v2}.1 −→ v1 (E-PairBeta1)

{v1,v2}.2 −→ v2 (E-PairBeta2)

t1 −→ t′1
t1.1 −→ t′1.1

(E-Proj1)

t1 −→ t′1
t1.2 −→ t′1.2

(E-Proj2)

t1 −→ t′1
{t1,t2} −→ {t′1,t2}

(E-Pair1)

t2 −→ t′2
{v1,t2} −→ {v1,t

′
2}

(E-Pair2)

Typing rules for pairs

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1,t2} : T1× T2
(T-Pair)

Γ ` t1 : T11× T12

Γ ` t1.1 : T11
(T-Proj1)

Γ ` t1 : T11× T12

Γ ` t1.2 : T12
(T-Proj2)

Tuples

t ::= ... terms
{ti

i∈1..n} tuple
t.i projection

v ::= ... values
{vi

i∈1..n} tuple value

T ::= ... types
{Ti

i∈1..n} tuple type

Evaluation rules for tuples

{vi
i∈1..n}.j −→ vj (E-ProjTuple)

t1 −→ t′1
t1.i −→ t′1.i

(E-Proj)

tj −→ t′j

{vi
i∈1..j−1,tj,tk

k∈j+1..n}

−→ {vi
i∈1..j−1,t′j,tk

k∈j+1..n}

(E-Tuple)

Typing rules for tuples

for each i Γ ` ti : Ti

Γ ` {ti i∈1..n} : {Ti
i∈1..n}

(T-Tuple)

Γ ` t1 : {Ti
i∈1..n}

Γ ` t1.j : Tj
(T-Proj)

Records

t ::= ... terms
{li=ti

i∈1..n} record
t.l projection

v ::= ... values
{li=vi

i∈1..n} record value

T ::= ... types
{li:Ti

i∈1..n} type of records

Evaluation rules for records

{li=vi
i∈1..n}.lj −→ vj (E-ProjRcd)

t1 −→ t′1
t1.l −→ t′1.l

(E-Proj)

tj −→ t′j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

−→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(E-Rcd)

Typing rules for records

for each i Γ ` ti : Ti

Γ ` {li=ti i∈1..n} : {li:Ti
i∈1..n}

(T-Rcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(T-Proj)

Sums and variants

New syntactic forms

t ::= ... terms
inl t tagging (left)
inr t tagging (right)
case t of inl x⇒t | inr x⇒t case

v ::= ... values
inl v tagged value (left)
inr v tagged value (right)

T ::= ... types
T+T sum type

T1+T2 is a disjoint union of T1 and T2 (the tags inl and inr

ensure disjointness)

New evaluation rules t −→ t′

case (inl v0)

of inl x1⇒t1 | inr x2⇒t2

−→ [x1 7→ v0]t1 (E-CaseInl)

case (inr v0)

of inl x1⇒t1 | inr x2⇒t2

−→ [x2 7→ v0]t2 (E-CaseInr)

t0 −→ t′0

case t0 of inl x1⇒t1 | inr x2⇒t2
−→ case t′0 of inl x1⇒t1 | inr x2⇒t2

(E-Case)

t1 −→ t′1

inl t1 −→ inl t′1
(E-Inl)

t1 −→ t′1

inr t1 −→ inr t′1
(E-Inr)

New typing rules Γ ` t : T

Γ ` t1 : T1

Γ ` inl t1 : T1+T2
(T-Inl)

Γ ` t1 : T2

Γ ` inr t1 : T1+T2
(T-Inr)

Γ ` t0 : T1+T2
Γ, x1:T1 ` t1 : T Γ, x2:T2 ` t2 : T

Γ ` case t0 of inl x1⇒t1 | inr x2⇒t2 : T
(T-Case)

Sums and Uniqueness of Types

Problem:

If t has type T, then inl t has type T+U for every U.

I.e., we’ve lost uniqueness of types.

Possible solutions:

I “Infer” U as needed during typechecking

I Give constructors different names and only allow each name
to appear in one sum type (requires generalization to
“variants,” which we’ll see next) — OCaml’s solution

I Annotate each inl and inr with the intended sum type.

For simplicity, let’s choose the third.

New syntactic forms

t ::= ... terms
inl t as T tagging (left)
inr t as T tagging (right)

v ::= ... values
inl v as T tagged value (left)
inr v as T tagged value (right)

Note that as T here is not the ascription operator that we saw
before — i.e., not a separate syntactic form: in essence, there is an
ascription “built into” every use of inl or inr.

New typing rules Γ ` t : T

Γ ` t1 : T1

Γ ` inl t1 as T1+T2 : T1+T2
(T-Inl)

Γ ` t1 : T2

Γ ` inr t1 as T1+T2 : T1+T2
(T-Inr)

Evaluation rules ignore annotations: t −→ t′

case (inl v0 as T0)

of inl x1⇒t1 | inr x2⇒t2
−→ [x1 7→ v0]t1

(E-CaseInl)

case (inr v0 as T0)

of inl x1⇒t1 | inr x2⇒t2
−→ [x2 7→ v0]t2

(E-CaseInr)

t1 −→ t′1
inl t1 as T2 −→ inl t′1 as T2

(E-Inl)

t1 −→ t′1
inr t1 as T2 −→ inr t′1 as T2

(E-Inr)

Variants

Just as we generalized binary products to labeled records, we can
generalize binary sums to labeled variants.

New syntactic forms

t ::= ... terms
<l=t> as T tagging
case t of <li=xi>⇒ti

i∈1..n case

T ::= ... types
<li:Ti

i∈1..n> type of variants

New evaluation rules t −→ t′

case (<lj=vj> as T) of <li=xi>⇒ti
i∈1..n

−→ [xj 7→ vj]tj
(E-CaseVariant)

t0 −→ t′0
case t0 of <li=xi>⇒ti

i∈1..n

−→ case t′0 of <li=xi>⇒ti
i∈1..n

(E-Case)

ti −→ t′i
<li=ti> as T −→ <li=t

′
i> as T

(E-Variant)

New typing rules Γ ` t : T

Γ ` tj : Tj

Γ ` <lj=tj> as <li:Ti
i∈1..n> : <li:Ti

i∈1..n>
(T-Variant)

Γ ` t0 : <li:Ti
i∈1..n>

for each i Γ, xi:Ti ` ti : T

Γ ` case t0 of <li=xi>⇒ti
i∈1..n : T

(T-Case)

Example

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;

a = <physical=pa> as Addr;

getName = λa:Addr.
case a of

<physical=x> ⇒ x.firstlast

| <virtual=y> ⇒ y.name;

Options and Enumerations

can be encoded using sum and product types, just like in Haskell.

Recursion

Recursion in λ→

I In λ→, all programs terminate. (Cf. Chapter 12.)

I Hence, untyped terms like Y and Z are not typable.

I But we can extend the system with a (typed) fixed-point
operator...

Example

ff = λie:Nat→Bool.

λx:Nat.
if iszero x then true

else if iszero (pred x) then false

else ie (pred (pred x));

iseven = fix ff;

iseven 7;

New syntactic forms

t ::= ... terms
fix t fixed point of t

New evaluation rules t −→ t′

fix (λx:T1.t2)
−→ [x 7→ (fix (λx:T1.t2))]t2

(E-FixBeta)

t1 −→ t′1
fix t1 −→ fix t′1

(E-Fix)

New typing rules Γ ` t : T

Γ ` t1 : T1→T1

Γ ` fix t1 : T1
(T-Fix)

A more convenient form

letrec x:T1=t1 in t2
def
= let x = fix (λx:T1.t1) in t2

letrec iseven : Nat→Bool =

λx:Nat.
if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))

in

iseven 7;

	The Lambda Calculus, formal
	Formalities
	Programming in the Lambda-Calculus
	Induction on Derivations
	Substitution and -Equivalence
	Types
	Properties of the Typing Relation
	The Simply Typed Lambda-Calculus
	Pairs, tuples, and records
	Sums and variants
	Recursion

